ning and end of the time-series which is not real. The wavelet analysis clearly shows a noticeable change in the
rainfall pattern after 1960’.
That means periodic component are responsible for producing increasing trend in the annual rainfall series of
all stations and change in rainfall pattern after 1960. This fact might be due to climate change as larger anthro-
pogenic trends are recorded during the period of 1960-1990
[46] [47]
.
5. Conclusion
This study reveals significant changes in seasonal and annual rainfall in Nira river basin of Maharashtra, Central

This
** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*
A. R. Murumkar, D. S. Arya
67
Table 4.
t-test significance for linear equation.
Series
Station
Linear Equation
t-test statistics
Annual
Akluj
y = 0.805x + 427.9
1.345
Baramati
y = 1.126x + 437.9
1.915
*
Bhor
y = 2.749x + 880.0
3.224
*
Malsiras
y = 1.415x + 464.6
1.916
*
Monsoon
Akluj
y =
−
0.270x + 240.6
−
0.696
Baramati
y = 0.270x + 177.0
0.858
Bhor
y = 2.374x + 613.1
3.104
*
Malsiras
y = 1.283x + 159.8
2.649
*
Post-Monsoon
Akluj
y = 2.065x + 51.93
5.337
*
Baramati
y = 1.093x + 204.9
2.476
*
Bhor
y = 0.618x + 207.0
1.533
Malsiras
y = 0.483x + 239.6
0.99
Summer
Akluj
y =
−
1.038x + 127.4
−
4.716
*
Baramati
y =
−
0.180x + 41.65
−
1.457
Bhor
y =
−
0.174x + 50.77
−
1.297
Malsiras
y =
−
0.205x + 42.46
−
1.883
*
Winter
Akluj
y = 0.049x + 7.953
0.643
Baramati
y =
−
0.069x + 13.10
−
1.095
Bhor
y =
−
0.005x + 7.094
−
0108
Malsiras
y =
−
0.149x + 21.67
−
1.524
(
*
10% significance level).
Table 5.
Homogeneity of stations by Chi-square statistic.
Null Hypothesis: Stations are homogeneous with respect to trends
Trend
2
hom
og
χ
Annual
−
35.653
*
Monsoon
−
7.690
*
Post-Monsoon
−
43.18
*
Summer
−
99.19
*
Winter
−
27.98
*
*
null hypothesis accepted at 10% significance level