{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Econometrics-I-5

# 2 r 2 r&#152&#152&#152;™ ™ 22/33 part 5

This preview shows pages 23–27. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 R 2 R &#152;&#152;&#152;™ ™ 22/33 Part 5: Regression Algebra and Fit Adjusted R2 What is being adjusted? The penalty for using up degrees of freedom. = 1 - [ ee /(n – K)]/[ yM y /(n-1)] uses the ratio of two ‘unbiased’ estimators. Is the ratio unbiased? = 1 – [(n-1)/(n-K)(1 – R2)] Will rise when a variable is added to the regression? is higher with z than without z if and only if the t ratio on z is in the regression when it is added is larger than one in absolute value. 2 R 2 R 2 R 2 R &#152;&#152;&#152;™ ™ 23/33 Part 5: Regression Algebra and Fit Full Regression (Without PD)---------------------------------------------------------------------- Ordinary least squares regression ............ LHS=G Mean = 226.09444 Standard deviation = 50.59182 Number of observs. = 36 Model size Parameters = 9 Degrees of freedom = 27 Residuals Sum of squares = 596.68995 Standard error of e = 4.70102 Fit R-squared = .99334 <********** Adjusted R-squared = .99137 <********** Info criter. LogAmemiya Prd. Crt. = 3.31870 <********** Akaike Info. Criter. = 3.30788 <********** Model test F[ 8, 27] (prob) = 503.3(.0000)--------+------------------------------------------------------------- Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X--------+------------------------------------------------------------- Constant| -8220.38** 3629.309 -2.265 .0317 PG| -26.8313*** 5.76403 -4.655 .0001 2.31661 Y| .02214*** .00711 3.116 .0043 9232.86 PNC| 36.2027 21.54563 1.680 .1044 1.67078 PUC| -6.23235 5.01098 -1.244 .2243 2.34364 PPT| 9.35681 8.94549 1.046 .3048 2.74486 PN| 53.5879* 30.61384 1.750 .0914 2.08511 PS| -65.4897*** 23.58819 -2.776 .0099 2.36898 YEAR| 4.18510** 1.87283 2.235 .0339 1977.50--------+------------------------------------------------------------- &#152;&#152;&#152;™ ™ 24/33 Part 5: Regression Algebra and Fit PD added to the model. R2 rises, Adj. R2 falls---------------------------------------------------------------------- Ordinary least squares regression ............ LHS=G Mean = 226.09444 Standard deviation = 50.59182 Number of observs. = 36 Model size Parameters = 10 Degrees of freedom = 26 Residuals Sum of squares = 594.54206 Standard error of e = 4.78195 Fit R-squared = .99336 Was 0.99334 Adjusted R-squared = .99107 Was 0.99137--------+------------------------------------------------------------- Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X--------+------------------------------------------------------------- Constant| -7916.51** 3822.602 -2.071 .0484 PG| -26.8077*** 5.86376 -4.572 .0001 2.31661 Y| .02231*** .00725 3.077 .0049 9232.86 PNC| 30.0618 29.69543 1.012 .3207 1.67078 PUC| -7.44699 6.45668 -1.153 .2592 2.34364 PPT| 9.05542 9.15246 .989 .3316 2.74486 PD| 11.8023 38.50913 .306 .7617 1.65056 (NOTE LOW t ratio) PN| 47.3306 37.23680 1.271 .2150 2.08511 PS| -60.6202** 28.77798 -2.106 .0450 2.36898 YEAR| 4.02861* 1.97231 2.043 .0514 1977.50--------+------------------------------------------------------------- &#152;&#152;&#152;™ ™ 25/33 Part 5: Regression Algebra and Fit...
View Full Document

{[ snackBarMessage ]}

### Page23 / 34

2 R 2 R&#152&#152&#152;™ ™ 22/33 Part 5...

This preview shows document pages 23 - 27. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online