{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Econometrics-I-11

# 1 1 ∂γ ∂γ ∂γ ∂γ ∂β ∂β ∂β ∂β

This preview shows pages 40–43. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ) ( ) ( ) 1 1 ( ) ∂γ ∂γ ∂γ ∂γ ∂β ∂β ∂β ∂β β β-β ∂δ ∂δ ∂δ ∂δ ∂β ∂β ∂β ∂β β + β β + β = = ∂ν ∂ν ∂ν ∂ν ∂β ∂β ∂β ∂β-β β β + β-β β β β β β β β ∂ρ ∂ρ ∂ρ ∂ρ ∂β ∂β ∂β ∂β G Part 11: Asymptotic Distribution Application: CES Function Using Spanish Dairy Farm Data Create ; x1=1 ; x2=logcows ; x3=logfeed ; x4=-.5*(logcows-logfeed)^2\$ Regress ; lhs=logmilk;rh1=x1,x2,x3,x4\$ Calc ; b1=b(1);b2=b(2);b3=b(3);b4=b(4) \$ Calc ; gamma=exp(b1) ; delta=b2/(b2+b3) ; nu=b2+b3 ; rho=b4*(b2+b3)/(b2*b3)\$ Calc ;g11=exp(b1) ;g12=0 ;g13=0 ;g14=0 ;g21=0 ;g22=b3/(b2+b3)^2 ;g23=-b2/(b2+b3)^2 ;g24=0 ;g31=0 ;g32=1 ;g33=1 ;g34=0 ;g41=0 ;g42=-b3*b4/(b2^2*b3) ;g43=-b2*b4/(b2*b3^2) ;g44=(b2+b3)/(b2*b3)\$ Matrix ; g=[g11,g12,g13,g14/g21,g22,g23,g24/g31,g32,g33,g34/g41,g42,g43,g44]\$ Matrix ; VDelta=G*VARB*G' \$ Matrix ; theta=[gamma/delta/nu/rho] ; Stat(theta,vdelta)\$ &#152;&#152;&#152;&#152;&#152; &#152;™ 40/42 Part 11: Asymptotic Distribution Estimated CES Function --------+-------------------------------------------------------------------- | Standard Prob. 95% Confidence Matrix| Coefficient Error z |z|>Z* Interval--------+-------------------------------------------------------------------- THETA_1| 105981*** 475.2458 223.00 .0000 105049 106912 THETA_2| .56819*** .01286 44.19 .0000 .54299 .59340 THETA_3| 1.06781*** .00864 123.54 .0000 1.05087 1.08475 THETA_4| -.31956** .12857 -2.49 .0129 -.57155 -.06758--------+-------------------------------------------------------------------- &#152;&#152;&#152;&#152;&#152; &#152;™ 41/42 Part 11: Asymptotic Distribution Asymptotics for Least Squares Looking Ahead… Assumptions: Convergence of XX / n (doesn’t require nonstochastic or stochastic X ). Convergence of X’/ n to . Sufficient for consistency. Assumptions: Convergence of (1/ n ) X’ to a normal vector, gives asymptotic normality What about asymptotic efficiency? &#152;&#152;&#152;&#152;&#152; &#152; 42/42...
View Full Document

{[ snackBarMessage ]}

### Page40 / 43

1 1 ∂γ ∂γ ∂γ ∂γ ∂β ∂β ∂β ∂β β...

This preview shows document pages 40 - 43. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online