Experiment will be repeated five times recording times of fall for each set of

# Experiment will be repeated five times recording

This preview shows page 3 - 4 out of 4 pages.

Experiment will be repeated five times, recording times of fall for each set of masses. (B) Increasing mass difference (keep total mass the same): Move masses from one side to the other and repeat measurement five times, recording times of fall for each set of masses. Data Collected: Analysis: In the first experiment set, it became apparent that as the mass was increased on both sides with the same mass difference, it took the heavier side longer to touch the ground, and the acceleration is increasing. The denominator is increasing and the numerator is constant therefore acceleration is increasing. If acceleration is increasing the measured fall time must decrease from the equation, a^= 2y/t2. In the second experiment, we found that an increasing difference between the weights shortened the time considerably. In both experiments the %o error calculations range from about Lo/o to 20010, with the highest %o errors for the smallest values of acceleration. The absolute difference between each set of values a. and am is fairly consistent Conclusion: By using Atwood's machine, Newton's law was successfully tested. With this experiment, the measurement of acceleration of the masses was determined from the mass loads, and a value for the acceleration of gravity was calculated from time measurements. The results are in close agreement with the hypothesis that the acceleration of the object observed being directly proportional to the net force acting on the object and inversely proportional to the total mass of the object. Though the data recorded was not completely accurate with the calculations conducted with Newton's 2nd Law of Motion, the approximate values were within one standard deviation. Frictional force in the Atwood's machine and observer's reaction time are the 2 main sources of error. One improvement is to raise the apparatus so that the distance of fall is larger and the measured fall time is increased. Reaction time errors (essentially constant) will be reduced as a percentage of the time measurements. #### You've reached the end of your free preview.

Want to read all 4 pages?

• Fall '16
• Mr. Wilgrubs
• • • 