It turns out from (6), the Eulerrelation, and the inequalityd0<0 thatft0,Δ0(x0) = 0,which contradicts the non-degeneracycondition. Therefore,Jnegationslash=∅.Forj∈J, we can writeλj(s) =cjsmj+ higher-order terms ins,wherecjnegationslash= 0 andmj∈Q.PutJ1:={j∈J:gj|CInegationslash≡0}.IfJ1=∅,then∂gj∂xi(φ(s))≡0for alli∈Iand allj∈J.We deduce from the condition (a5) that∂ft(s)∂xi(φ(s))≡0for alli∈I.Consequently,∂ft0,Δ0∂xi(x0) = 0for alli∈I.It follows from (6), the Euler relation, and the inequalityd0<0 thatft0,Δ0(x0) = 0,whichcontradicts the non-degeneracy condition.HenceJ1negationslash=∅.For eachj∈J1, letdjbe the13
minimal value of the linear function∑i∈IαiqionRI∩Γ(gj) and Δjbe the maximal face ofRI∩Γ(gj) where this linear function takes its minimum value. We can writegj(φ(s)) =gj,Δj(x0)sdj+ higher-order terms ins,wheregj,Δjis the face function associated withgjand Δj.By the condition (a4), thengj,Δj(x0)=0for allj∈J1.(7)On the other hand, fori∈Iandj∈J1,∂gj∂xi(φ(s)) =∂gj,Δj∂xi(x0)sdj−qi+ higher-order terms ins.Fori /∈Iandj∈J1, the functiongj,Δjdoes not depend on the variablexi, and hence,∂gj,Δj∂xi(x0) = 0.(8)The condition (a5) implies that for alli∈I,∂ft0,Δ0∂xi(x0)sd0−qi+· · ·+summationdisplayj∈J2cj∂gj,Δj∂xi(x0)sℓ−qi+· · ·= 0,(9)whereℓ:= minj∈J1(mj+dj),J2:={j∈J1:ℓ=mj+dj}and the dots stand for thehigher-order terms ins. There are three cases to be considered.Case 1:ℓ > d0. By (6) and (9), we have∂ft0,Δ0∂xi(x0) = 0fori= 1, . . . , n.This, together with the Euler relation, implies thatd0ft0,Δ0= 0.Hence,ft0,Δ0(x0) = 0 because ofd0<0.This contradicts the non-degeneracy condition.Case 2:ℓ=d0. We deduce from (6), (8) and (9) that∂ft0,Δ0∂xi(x0) +summationdisplayj∈J2cj∂gj,Δj∂xi(x0) = 0fori= 1, . . . , n.14
Consequently,0=nsummationdisplayi=1qix0i∂ft0,Δ0∂xi(x0) +nsummationdisplayi=1summationdisplayj∈J2cjqix0i∂gj,Δj∂xi(x0)=nsummationdisplayi=1qix0i∂ft0,Δ0∂xi(x0) +summationdisplayj∈J2cjnsummationdisplayi=1qix0i∂gj,Δj∂xi(x0)=d0ft0,Δ0(x0) +summationdisplayj∈J2cjdjgj,Δj(x0)=d0ft0,Δ0(x0),where the last equation follows from (7). Sinced0<0,we getft0,Δ0(x0) = 0,which contra-dicts the non-degeneracy condition.Case 3:ℓ < d0. By (8) and (9), we obtainsummationdisplayj∈J2cj∂gj,Δj∂xi(x0) = 0fori= 1, . . . , n.This fact and (7) combined give a contradiction with the non-degeneracy condition.squareLemma 4.2(Boundedness of singularities at infinity).There exists a real numberr >0such thatΣ∞(ft|S)⊂Drfor allt∈[0,1].Proof.Suppose the assertion of the lemma is false. By the Curve Selection Lemma at infinity(see [25] or [17]), we can find a nonempty setI⊂ {1, . . . , n}withft|CInegationslash≡0,a (possiblyempty) setJ⊂ {j∈ {1, . . . , p}:gj|CInegationslash≡0},a vectorq∈Rnwith mini∈Iqi<0 and0 =d(q,Γ(ft|CI)), and analytic curvesφ: (0, ǫ)→(C∗)I,t: (0, ǫ)→[0,1],andλj: (0, ǫ)→C, j∈J,such that the following conditions hold(a1)bardblφ(s)bardbl → ∞ass→0;(a2)t(s)→t0∈[0,1] ass→0;(a3)ft(s),Δ0(φ(s))→ ∞ass→0;(a4)gj,Δj(φ(s)) = 0 for allj∈Jand alls∈(0, ǫ);(a5)∇ft(s),Δ0(φ(s)) +∑j∈Jλj(s)∇gj,Δj(φ(s)) = 0 for alls∈(0, ǫ),where Δ0:= Δ(q,Γ(ft|CI) and Δj:= Δ(q,Γ(gj|CI)) forj∈J.
Upload your study docs or become a
Course Hero member to access this document
Upload your study docs or become a
Course Hero member to access this document
End of preview. Want to read all 24 pages?
Upload your study docs or become a
Course Hero member to access this document
Term
Spring
Professor
NoProfessor
Tags
CN