which is then equivalently represented by 0 2 0 0 0 out exc ac d inv inv inv

# Which is then equivalently represented by 0 2 0 0 0

This preview shows page 6 - 10 out of 13 pages.

 which is then equivalently represented by (0) , 2 (0) (0) (0) out exc ac d inv inv inv inv n inv V co n n V P I V V V V   In addition, IC injects reactive power to the AC section according to the following function , 1 1, ic ic n Q bus bus n Q Q n V V where 1 bus inv V V Accordingly, we have the following small-signal equation ic Q inv Q n V    Meanwhile, the reactive power amount injected into the AC section is represented by
1 , , in out ic bus ic q inv ac q Q V I V I     which implies the following small-signal equation (0) 2 (0) (0) , 1 ic i o c inv inv inv ut ac q I Q Q V V V     Equivalently, we have the following small-signal equation (0) (0) 2 0 , ( ) Q inv o ic inv u v t ac q in n V Q V V I  b) DC-Side Model Since the IC is lossless, the active power flowing into the DC section is represented by out in exc ic con dc dc ic P V V I I Accordingly, the following small-signal equation can be obtained (0) 2 (0) (0) 1 in exc dc exc con con con P I P V V V   which can be equivalently represented by (0) (0) 2 (0) (0) in con exc dc inv con co on V n c V P I V V V n n  c) Complete IC Model All the controlled current quantities of the IC are listed as below (0) , 2 (0) (0) (0) out exc ac d inv inv inv inv n inv V co n n V P I V V V V   (0) (0) 2 0 , ( ) Q inv o ic inv u v t ac q in n V Q V V I  (0) (0) 2 (0) (0) in con exc dc inv con co on V n c V P I V V V n n 
4) Complete Model of the Hybrid AC/DC Microgrid After combining the models of the AC section, the DC section, and the IC, we can write down the complete small-signal state-space model of the hybrid AC/DC microgrid as below (0) (0) (0) ( (0) 0) (0) , (0) (0) (0) 1 , 1, 1 (0) 1 , , 0 0 0 0 1 0 . inv d inv exc c P c P c P c P c P c V inv Q c ic inv Q c inv q Q c Q c Q c inv inv inv load d load q net load q loa con P m n m m m m n V m Q m I m n m V V V R I I L L I I V I V , , (0) (0) 1 1, 1 (0) (0) (0) (0) 2 0 0 0 0 0 inv inv load d load q d d net con P c con P c exc P c P c con c P o V c c n V I I R V L k V k P k k I V n n R k  