Ukuran pemusatan data yang sering digunakan adalah distribusi frekuensi Ukuran

Ukuran pemusatan data yang sering digunakan adalah

This preview shows page 11 - 12 out of 12 pages.

Ukuran pemusatan data yang sering digunakan adalah distribusi frekuensi. Ukuran statistik ini cocok untuk data nominal dan data ordinal (data kategorik). Sementara nilai mean adalah ukuran pemusatan data yang cocok untuk data continuous. Ukuran deskriptif lain untuk pemusatan data adalah median (nilai tengah) dan modus (nilai yang paling sering muncul). Ukuran penyebaran data (measures of spread). Ukuran penyebaran data yang sering digunakan adalah standar deviasi. Ukuran penyebaran data ini cocok digunakan untuk data numerik atau continuous. Sementara untuk data kategorik, nilai range merupakan ukuran yang cocok. Sedangkan penelitian inferensial adalah proses pengambilan kesimpulan- kesimpulan berdasarkan data sampel yang lebih sedikit menjadi kesimpulan yang lebih umum untuk sebuah populasi. Penelitian inferensial diperlukan jika peneliti memiliki keterbatasan dana sehingga untuk lebih efisien penelitian dilakukan dengan mengambil jumlah sampel yang lebih sedikit dari populasi yang ada. Pada penelitian inferensial, dilakukan prediksi. Statistik inferensial membutuhkan pemenuhan asumsi-asumsi. Asumsi paling awal yang harus dipenuhi adalah sampel diambil secara acak dari populasi. Hal tersebut diperlukan karena pada statistika inferensial perlu keterwakilan sampel atas populasi. Asumsi-asumsi lain yang perlu dipenuhi mengikuti alat analisis yang digunakan. Jika yang digunakan adalah analisis regresi, maka asumsi-asumsi data harus memenuhi asumsi analisis regresi. Metode analisis statistik yang digunakan dalam statistik inferensial adalah T- test, Anova, Anacova, Analisis regresi, Analisis jalur, Structural equation modelling (SEM) dan metode analisis lain tergantung tujuan penelitian. Dalam statistik inferensial harus ada pengujian hipotesis yang bertujuan untuk melihat apakah ukuran statistik yang digunakan dapat ditarik menjadi kesimpulan yang lebih luas dalam populasinya. Ukuran-ukuran statistik
Image of page 11

Subscribe to view the full document.

tersebut dibandingkan dengan pola distribusi populasi sebagai normanya. Oleh sebab itu, mengetahui pola distribusi data sampel menjadi penting dalam statistik inferensial. Contoh yang baik untuk statistik inferensial adalah pada pemilu presiden 2014. Berbagai lembaga survei melakukan quick count untuk mengetahui secara cepat kandidat presiden mana yang akan mendapatkan suara rakyat lebih banyak. Lembaga survei tersebut mengambil sebagian sampel TPS (Tempat Pemungutan Suara) dari total TPS populasi. Hasil sampel TPS tersebut digunakan untuk generalisasi terhadap keseluruhan TPS. Katakanlah diambil 2.000 sampel TPS dari 400.000 populasi TPS yang ada. Hasil dari 2.000 TPS adalah statistik deskriptif. Sedangkan jika kita mengambil kesimpulan terhadap 400.000 TPS adalah statistik inferensial.Kekuatan statistik inferensial tergantung pada teknik pengambilan sampel dan proses randomisasi. Jika proses randomisasi dilakukan dengan benar, maka sampel yang lebih sedikit dapat memprediksi nilai populasi dengan baik. Dengan demikian dapat menghemat anggaran pengambilan / pengumpulan data.
Image of page 12
  • Spring '18

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern

Ask Expert Tutors You can ask 0 bonus questions You can ask 0 questions (0 expire soon) You can ask 0 questions (will expire )
Answers in as fast as 15 minutes