Is raised to the ln of any number we get that number

Info icon This preview shows pages 1–2. Sign up to view the full content.

 is raised to the ln of any number, we get  that number. For example,  e ln 12  would equal 12 or  e ln 3 x 4  would  equal 3x-4. However, we already know that the limit of  n 1 n  gives us an 
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

indeterminate form. We can use the power rule to get  ln n 1 n  ( ln x a →a∙ ln x ¿ to a form that would allow us to find the limit. The  following steps will demonstrate this process. i. lim n→∞ e ln n 1 n   ii. Power rule for  raised to  ln n 1 n n 1 n = ¿ 1 n ln n ln ¿  =  ln n n iii. lim n→∞ e ln n n     e lim n→ ∞ ln n n   iv. lim n→∞ ln n n   v. Apply l’Hopital’s Rule to  ln n n lim n→∞ 1 n 1     lim n→∞ 1 n    0 vi. lim n→∞ e ln n 1 n  becomes  e 0 =1 5) Revisit limit in Step 3:  1 e lim n→∞ 100 1 n ∙n 1 n  =  1 e 1 1 1 e B. Determine the convergence or divergence of the given infinite series according to the  results of the root test.  The infinite series,  n = 1 100 n e n , converges absolutely by the root test because when  ρ < 1 , the series converges absolutely. The   for the infinite series was equal to  1 e C. Hass, J., & Weir, M. D. (2008).   Thomas calculus: Early transcendentals . Boston:  Pearson Addison-Wesley.
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.
  • Summer '17
  • lim, Natural logarithm, n N

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern