Algebraical numbers 41 chapter ii functions of real

Info icon This preview shows pages 9–13. Sign up to view the full content.

View Full Document Right Arrow Icon
Algebraical numbers, 41. CHAPTER II FUNCTIONS OF REAL VARIABLES 20. The idea of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 21. The graphical representation of functions. Coordinates . . . . . . . . 46 22. Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 23. Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 24–25. Rational functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 26–27. Algebraical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 28–29. Transcendental functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 30. Graphical solution of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
CONTENTS viii SECT. PAGE 31. Functions of two variables and their graphical representation . . 68 32. Curves in a plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 33. Loci in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Miscellaneous Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Trigonometrical functions, 60. Arithmetical functions, 63. Cylinders, 72. Contour maps, 72. Cones, 73. Surfaces of revolution, 73. Ruled sur- faces, 74. Geometrical constructions for irrational numbers, 77. Quadra- ture of the circle, 79. CHAPTER III COMPLEX NUMBERS 34–38. Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 39–42. Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 43. The quadratic equation with real coefficients . . . . . . . . . . . . . . . . . . 96 44. Argand’s diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 45. De Moivre’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 46. Rational functions of a complex variable . . . . . . . . . . . . . . . . . . . . . . 104 47–49. Roots of complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Miscellaneous Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Properties of a triangle, 106, 121. Equations with complex coeffi- cients, 107. Coaxal circles, 110. Bilinear and other transforma- tions, 111, 116, 125. Cross ratios, 114. Condition that four points should be concyclic, 116. Complex functions of a real variable, 116. Construction of regular polygons by Euclidean methods, 120. Imaginary points and lines, 124. CHAPTER IV LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE 50. Functions of a positive integral variable . . . . . . . . . . . . . . . . . . . . . . . 128 51. Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 52. Finite and infinite classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Image of page 10
CONTENTS ix SECT. PAGE 53–57. Properties possessed by a function of n for large values of n . . . 131 58–61. Definition of a limit and other definitions . . . . . . . . . . . . . . . . . . . . . 138 62. Oscillating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 63–68. General theorems concerning limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 69–70. Steadily increasing or decreasing functions . . . . . . . . . . . . . . . . . . . . 157 71. Alternative proof of Weierstrass’s Theorem . . . . . . . . . . . . . . . . . . . 159 72. The limit of x n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 73. The limit of 1 + 1 n n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 74. Some algebraical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 75. The limit of n ( n x - 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 76–77. Infinite series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 78. The infinite geometrical series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 79. The representation of functions of a continuous real variable by means of limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 80. The bounds of a bounded aggregate . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 81. The bounds of a bounded function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 82. The limits of indetermination of a bounded function . . . . . . . . . . 180 83–84. The general principle of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 183 85–86. Limits of complex functions and series of complex terms . . . . . . 185 87–88. Applications to z n and the geometrical series . . . . . . . . . . . . . . . . . 188 Miscellaneous Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Oscillation of sin nθπ , 144, 146, 181. Limits of n k x n , n x , n n , n n !, x n n ! , m n x n , 162, 166. Decimals, 171. Arithmetical series, 175. Harmonical series, 176. Equation x n +1 = f ( x n ), 190. Expansions of rational func- tions, 191. Limit of a mean value, 193. CHAPTER V LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS AND DISCONTINUOUS FUNCTIONS 89–92. Limits as x → ∞ or x → -∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Image of page 11

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
CONTENTS x SECT. PAGE 93–97. Limits as x a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 98–99. Continuous functions of a real variable . . . . . . . . . . . . . . . . . . . . . . . . 210 100–104. Properties of continuous functions. Bounded functions. The oscillation of a function in an interval . . . . . . . . . . . . . . . . . . . . 215 105–106. Sets of intervals on a line. The Heine-Borel Theorem . . . . . . . . . . 223 107. Continuous functions of several variables . . . . . . . . . . . . . . . . . . . . . . 228 108–109.
Image of page 12
Image of page 13
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern