2011 Λύσεις Σχ. β&I

Ôfiùâ ìôˆ fi ùô ùúáˆóô μ úóôìâ

Info icon This preview shows pages 104–107. Sign up to view the full content.

View Full Document Right Arrow Icon
, ÔfiÙ √ÌÔ›ˆ˜ ·fi ÙÔ ÙÚ›ÁˆÓÔ §¢μ ·›ÚÓÔ˘Ì ΔÔ ¿ıÚÔÈÛÌ· ÙˆÓ ÂÌ‚·‰ÒÓ ÙˆÓ ‰‡Ô ÙÚÈÁÒÓˆÓ Â›Ó·È ÙfiÙ ∂ = ∂ 1 + ∂ 2 = ÕÚ· , Ì 0 ≤ x ≤ 6. (1) ∞fi ÙËÓ (1) Û˘ÌÂÚ·›ÓÔ˘Ì fiÙÈ ÙÔ ÂÌ‚·‰fiÓ ∂ Â›Ó·È ÂÏ¿¯ÈÛÙÔ ÁÈ· ÙËÓ ÙÈÌ‹ ÙÔ˘ x, ÁÈ· ÙËÓ ÔÔ›· Ë Û˘Ó¿ÚÙËÛË f(x) = x 2 – 6x + 18 ·ÚÔ˘ÛÈ¿˙ÂÈ ÂÏ¿¯È- ÛÙÔ. ∂Âȉ‹ · = 1 > 0, Ë Û˘Ó¿ÚÙËÛË ·ÚÔ˘ÛÈ¿˙ÂÈ ÂÏ¿¯ÈÛÙÔ ÁÈ· ∂Ô̤ӈ˜ ÙÔ ÂÌ‚·‰fiÓ Á›ÓÂÙ·È ÂÏ¿¯ÈÛÙÔ fiÙ·Ó ÙÔ ª Â›Ó·È ÙÔ Ì¤ÛÔ ÙÔ˘ ∞μ. 5. ∞fi ÙÔ Û¯‹Ì· ‚ϤÔ˘Ì fiÙÈ ÁÈ· ÙȘ ‰È·ÛÙ¿ÛÂȘ x Î·È y ÈÛ¯‡ÂÈ 2x + 2x + 3y = 240 4x + 3y = 240 y = (1) TÔ ÂÌ‚·‰fiÓ ÙˆÓ ‰‡Ô ¯ÒÚˆÓ Â›Ó·È ∂ = 2xy = 2x (2) °È· ÙË Û˘Ó¿ÚÙËÛË Â›Ó·È ÔfiÙ ·˘Ù‹ ·ÚÔ˘ÛÈ¿˙ÂÈ Ì¤ÁÈÛÙÔ ÁÈ· ΔfiÙ ·fi ÙËÓ (1) ·›ÚÓÔ˘Ì ÕÚ·, ÔÈ ‰È·ÛÙ¿ÛÂȘ Ô˘ ‰›ÓÔ˘Ó ÙÔ Ì¤ÁÈÛÙÔ ÂÌ‚·‰fiÓ Â›Ó·È x = 30m Î·È y = 40m. y = 240 – 4 30 3 = 40. x = –‚ = –160 –16 3 = 30. · = – 8 3 < 0, ∂(x) = – 8 3 x 2 + 160x 240 – 4x 3 = – 8 3 x 2 + 160x. 240 – 4x 3 . x = –‚ = 6 2 = 3. E = 3 2 (x 2 – 6x + 18). = 3 4 x 2 + 3 4 (6 – x) 2 = 1 2 x x 3 2 + 1 2 (6 –x) (6 –x) 3 2 1 2 (∞ª)(∫°) + 1 2 (ªμ)(§¢) ˘ 2 = (6 – x) 3 2 . ˘ 1 = x 3 2 . ˘ 1 2 = x 2 x 2 2 = x 2 x 2 4 = 3x 2 4 ∫∂º∞§∞π√ 7: ª∂§∂Δ∏ μ∞™π∫ø¡ ™À¡∞ƒΔ∏™∂ø¡ 104
Image of page 104

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
∞™∫∏™∂π™ °π∞ ∂¶∞¡∞§∏æ∏ 1. i) Œ¯Ô˘Ì ii) Œ¯Ô˘Ì · 2 + ‚ 2 + Á 2 ≥ ·‚ + ‚Á + Á· · 2 + ‚ 2 + Á 2 – ·‚ – ‚Á – Á· ≥ 0 Ô˘ ÈÛ¯‡ÂÈ. ΔÔ “=” ÈÛ¯‡ÂÈ ·Ó Î·È ÌfiÓÔ ·Ó · – ‚ = 0 Î·È ‚ – Á = 0 Î·È Á – · = 0 · = ‚ = Á. 2. i) Œ¯Ô˘Ì (΂) 2 + (ÎÁ) 2 = Î 2 2 + Î 2 Á 2 = Î 2 (‚ 2 + Á 2 ) = Î 2 · 2 = (η) 2 . ii) Œ¯Ô˘Ì (Ì 2 – Ó 2 ) 2 + (2ÌÓ) 2 = Ì 4 – 2Ì 2 Ó 2 + Ó 4 + 4Ì 2 Ó 2 = Ì 4 + 2Ì 2 Ó 2 + Ó 4 = (Ì 2 + Ó 2 ) 2 . 3 4 5 8 6 10 5 12 13 21 20 29 16 30 34 15 8 17 1 2 (· – ‚) 2 + (‚ – Á) 2 + (Á – ·) 2 ≥ 0 = · 2 + ‚ 2 + Á 2 – ·‚ – ‚Á – Á·. = 1 2 2 · 2 + ‚ 2 + Á 2 – ·‚ – ‚Á – Á· = 1 2 2 + 2‚ 2 + 2Á 2 – 2·‚ – 2‚Á – 2Á· = 1 2 · 2 – 2·‚ + ‚ 2 + ‚ 2 – 2‚Á + Á 2 + Á 2 – 2Á· + · 2 1 2 (· – ‚) 2 + (‚ – Á) 2 + (Á – ·) 2
Image of page 105
3. ∞) Œ¯Ô˘Ì 4·‚ ≤ · 2 + ‚ 2 + 2·‚ 0 ≤ · 2 + ‚ 2 + 2·‚ – 4·‚ 0 ≤ · 2 + ‚ 2 – 2·‚ 0 ≤ (· – ‚) 2 , Ô˘ ÈÛ¯‡ÂÈ. ΔÔ “=” ÈÛ¯‡ÂÈ fiÙ·Ó · = ‚. ∞fi ÙËÓ ·ÓÈÛfiÙËÙ· ·˘Ù‹ ÚÔ·ÙÂÈ fiÙÈ ÙÔ ÂÌ‚·‰fiÓ ÂÓfi˜ ÔÚıÔÁˆÓ›Ô˘ Ì ‰È·ÛÙ¿ÛÂȘ · Î·È ‚ ‰ÂÓ ˘ÂÚ‚·›ÓÂÈ ÙÔ ÂÌ‚·‰fiÓ ÙÔ˘ ÙÂÙÚ·ÁÒÓÔ˘ Ì ÏÂ˘Ú¿ ÙÔ ËÌÈ¿ıÚÔÈÛÌ·
Image of page 106

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 107
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern