100%(3)3 out of 3 people found this document helpful
This preview shows page 12 - 15 out of 15 pages.
15.Find the vector equation of the line of intersection of the following two planest
Get answer to your question and much more
⃗w=(−1,−1,0)+t(−1,2,1)16.Determine whether the following system of equations has a single point of intersection.uw
Get answer to your question and much more
14x−27z−5=0[7][5]×214x−42z=0[8][8]−[7]−15z+5=0−15z=−5z=515z=13Subz=13into [5]7x−21z=07x−21(13)=07x−7=07x=7x=1Subx=1∧z=13into [1]4x+y−9z=04(1)+y−9(13)=04+y−3=0y=−1The point of intersection is(1,−1,13)17. Find the shortest distance fromP(−4,2,6)to the plane2x−3y+z−8=0⃗n=(A,B ,C)⃗n=(2,−3,1)Letx=0∧y=12x−3y+z−8=02(0)−3(1)+z−8=0z−11=0z=11
Another point on the plane isQ(0,1,11)⃗PQ=Q−P⃗PQ=(−4,2,6)−(0,1,11)⃗PQ=(−4,1,−5)|pro j⃗n(⃗PQ)|=|⃗PQ ∙⃗n⃗n∙⃗n|∨⃗n∨¿|pro j⃗n(⃗PQ)|=|(−4,1,−5)∙(2,−3,1)(2,−3,1)∙(2,−3,1)|∨(2,−3,1)∨¿|pro j⃗n(⃗PQ)|=|(−8−3−5)(4+9+1)|∨√4+9+1∨¿|pro j⃗n(⃗PQ)|=|−1614|√14|pro j⃗n(⃗PQ)|=−16√1414|pro j⃗n(⃗PQ)|=−4.28(two decimal places)The shortest distance betweenPand the plane is 4.28 units (to two decimalplaces)