3 Add more weight up to 500 g with increment of 100 g to the weight hanger and

# 3 add more weight up to 500 g with increment of 100 g

This preview shows page 2 - 4 out of 9 pages.

3. Add more weight (up to 500 g with increment of 100 g) to the weight hanger, and record in Data Table I the position y 1 of the bottom of the spring for each added weight. 4.Calculate the displacement of the spring from its equilibrium position, y=y1y0and record in Data Table I. 5.Convert the total mass (hanging mass + mass of weight hanger) from unit of kilogram (kg) to Newton (N), and record as weight (w) in Data Table I. 6. Plot a graph (Graph 1) of weight (w) vs. displacement (y) using the experimental data recorded in Data Table I. 7. Fit the data by a regression line, the slope of which id the spring constant k ( ¿ N / m ) . Part II: To verify that the period of vibration of a body on a spring is independent of the amplitude With a mass of 300 g on the 50 g weight hanger, stretch the spring about 1 cm from the equilibrium position of the system. Release the weight and measure and record the time for twenty complete vibrations. In counting the oscillations, count zero at the instant you start the time clock. Repeat this procedure with one vibration amplitude of about 3 cm. Record the time in Data Table II. Compare to see if you obtain similar results and verify that the period of vibration of a body on a spring is independent of the amplitude. Part III: Measure the oscillation period of a body of different mass hung on a spring 1. With different mass (from 200 g up to 500 g with increment of 100 g) added on the 50 g weight hanger, stretch the spring a small distance from its equilibrium position. It is important that the vibration amplitude should be kept in such a way that the mass will be somewhat stretched even at its highest position. Release the weight and measure and record the time for twenty complete vibrations. In this procedure, the time measurement should be done at least 3 or 4 times, preferably with each member of a group doing the timing. 2. Calculate the average time for twenty complete vibrations and further the oscillation period T and T 2 for each different mass and record in the Data Table III. 3. Plot a graph (Graph 2) of m vs. T 2 , fit it with a regression line and the spring constant could be deduced from the slope. Part IV: Measure the oscillation period of a simple pendulum with different length 1. Hang the pendulum at the groove of the small AI rod. 2. Adjust the pendulum length to 20 cm, 30 cm, 40 cm, and 50 cm. For each length, displace the pendulum a small angle off the vertical direction and release it, measure the time for 20 complete oscillations. The time should be measured for 3 times with each member of the group doing the timing once. Take the average and divide it by 20 to get period T. Further calculate T 2 and record all the data in Data Table IV. Remember the period T is the time for one complete oscillation, which is the time required to return to the same point going the same direction.  #### You've reached the end of your free preview.

Want to read all 9 pages?

• • • 