•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
••
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
FIGURE
8.13.
Data with two features and two
classes (blue and orange), displaying a pure interaction.
The left panel shows the partition found by three splits
of a standard, greedy, tree-growing algorithm. The ver-
tical grey line near the left edge is the first split, and
the broken lines are the two subsequent splits. The al-
gorithm has no idea where to make a good initial split,
and makes a poor choice. The right panel shows the
near-optimal splits found by bumping the tree-growing
algorithm
20
times.

Subscribe to view the full document.
Bagging and Bumping
Bagging and Random Forests
Boosting Methods
Boosting Trees
Bagging (Revisited)
The bagging estimate is defined as
ˆ
f
bag
(
x
) =
1
B
B
X
b
=
1
ˆ
f
*
b
(
x
)
for regression and
ˆ
f
bag
(
x
) = max
k
B
X
b
=
1
I
{
ˆ
f
*
b
(
x
)=
k
}
for classification where
k
∈
K
are the possible classes.
c 2019 The Trustees of the Stevens Institute of Technology

Bagging and Bumping
Bagging and Random Forests
Boosting Methods
Boosting Trees
Out-of-Bag Error
1.
Predict response for the
i
th
observation using the trees that
did not utilize this observation in their construction
2.
Take the average of these responses (or majority vote) to
get a single OOB prediction for each of the
n
observations
3.
Use these to calculate the OOB MSE or the OOB
Classification error
c 2019 The Trustees of the Stevens Institute of Technology

Subscribe to view the full document.
Bagging and Bumping
Bagging and Random Forests
Boosting Methods
Boosting Trees
Random Forests
1.
Create a bootstrapped sample of the observations
2.
Build a tree, but at each split, only consider
m
≤
p
predictors
3.
Use the trees built in this way to calculate your prediction
like in bagging.


- Fall '16
- alec schimdt