0.000.020.040.060.080.10-2-1012LeverageStandardized residualslm(weight ~ feed)Cook's distanceResiduals vs Leverage545368TukeyHSD(aov(weight~feed,data =chickwts))$feed##difflwruprp adj## horsebean-casein-163.383333 -232.346876 -94.41979 3.070197e-08## linseed-casein-104.833333 -170.587491 -39.07918 2.100151e-04## meatmeal-casein-46.674242 -113.90620720.55772 3.324584e-01## soybean-casein-77.154762 -140.517054 -13.79247 8.365309e-03## sunflower-casein5.333333-60.42082571.08749 9.998902e-01## linseed-horsebean58.550000-10.413543 127.51354 1.413329e-01## meatmeal-horsebean116.70909146.335105 187.08308 1.062092e-04## soybean-horsebean86.22857119.541684 152.91546 4.216654e-03## sunflower-horsebean168.71666799.753124 237.68021 1.219887e-08## meatmeal-linseed58.159091-9.072873 125.39106 1.276965e-01## soybean-linseed27.678571-35.68372191.04086 7.932853e-01## sunflower-linseed110.16666744.412509 175.92082 8.843233e-05## soybean-meatmeal-30.480519-95.37510934.41407 7.391356e-01## sunflower-meatmeal52.007576-15.224388 119.23954 2.206962e-01## sunflower-soybean82.48809519.125803 145.85039 3.884521e-03When performing model diagnostics we see that our linearity assumption is valid, the distri-bution of our errors appears to be normal, and homoscedasticity is present. Our anova tablegives us a p-value way below the .05 threshold. When using our TukeyHSD function we find