In nature, pure nitrogen is in the form of a diatomic molecule (N2). Nitrogen is abundant in the atmosphere, forming about 78% of it. The nitrogen-nitrogen bond in an N2 molecule is an extremely strong triple bond. This bond cannot be easily broken. This causes nitrogen to be an inert molecule in most situations. Nitrogen has five valence electrons. Nitrogen shows a variety of oxidation states in compounds, ranging from +5 to –3. The most common oxidation states are +5, 0, and –3. Nitrogen is highly electronegative but is less electronegative than oxygen and fluorine. Nitrogen commonly takes on positive oxidation states when in a compound with oxygen or fluorine and negative oxidation states when in a compound with other elements.
The low reactivity of N2 gas makes it important in many industries. N2 is obtained from the atmosphere by separating N2 from air.
Living organisms need a variety of nitrogen compounds. Plants are an important part of the nitrogen cycle, as animals can obtain nitrogen by eating plants. Plants cannot obtain nitrogen from air, due to the high strength of the nitrogen-nitrogen bond. In nature, plants rely on bacteria to break nitrogen down. The availability of non-N2 nitrogen in nature is a major factor limiting plant growth. The process of breaking down N2 into more usable nitrogen compounds is called nitrogen fixation. Nitrogen fixation is used to convert nitrogen in the air to molecules such as ammonia that can be used by plants.
Nitrogen-based artificial fertilizers can be used to overcome this limitation. Nitrogen-based artificial fertilizers use the Haber-Bosch process which breaks down the nitrogen-nitrogen bonds in N2 and converts nitrogen into ammonia (NH3). This process relies on the following reaction:Pure phosphorus has multiple allotropes. White phosphorus is molecular, with molecules consisting of four phosphorus atoms tetrahedral in shape. White phosphorus is unstable and very reactive; it spontaneously combusts when it comes in contact with air. Red phosphorus is an amorphous solid and is much less reactive. Black phosphorus is a crystal and is more stable than either white or red phosphorus.
Phosphorus is extracted from minerals that have phosphates. The most common phosphate found in nature is calcium phosphate (Ca3(PO4)2). Phosphorus halides such as PCl3 and PCl5 are the most important commercial phosphorus compounds, used in lubrication oils, paints, pesticides, and flame retardants. These halides are obtained by reacting phosphorus with diatomic molecules of elements of group 17.