Problem 1:
Problem 2:
F
Problem 3: Recall that f (x) g(x) F ()G(). Then Y () = X()H().
We know that the Fourier Transform property for time scaling is,
F
f (t)
and that
1
F( )

1
F
sinc(t) rect( )
Problem 1:
(a)$
x(t) = sinc(t) !
!
Fourier!Transform!
!
!
!
!
!
!
1
(b)$
X(t11)!
Fourier
sin c(t) X (w) = i( , )(w)
Fourier
sin c(t 1) X 1 (w) = X (w) e jw
X 1 (w) = i( , )(w)
!
R X 1 (w) = w
!
Fourie