212.339 Game theory and Applications 2010 Autumn
In Ho Lee
Mid-term Exam
(2010, November 4)
1. (25 points) Consider the game between a parent and a child. The child can choose to
be good (G) or bad (B). The parent can punish the child (P) or not (N). The

212.339 Game theory and Applications
In Ho Lee
Homework 5
(due on 2015, December 1)
1. Consider the following 2-player, seller-buyer signaling game. The game starts with a random
move by nature to determine whether the item the seller has is good or bad (

212.339 Game theory and Applications 2014 Autumn
In Ho Lee
Final Exam
(2014, December 9)
1. (50 points) Consider Hotelling’s beach where two ice cream shops are located at two ends
of a beach with distance 1. Consumers are continuously distributed uniform

Game Theory
Problem Set 3
1. Consider the following extensive form game.
1
A
B
2
(
Payoff to 1
Payoff to 2
)
C
D
C
D
1
E
F
( 21 )
( -22 ) ( 33 )
( -32 )
( 12 )
(a) Write down the strategies available to each player. [10 marks]
(b) Find the pure-strategy N

212.339 Game theory and Applications
In Ho Lee
Homework 1
(due on 2016, September 22)
1. Suppose that the information partitions of two agents, A and B, are given as follows:
PA = cfw_1, 2, cfw_3, 4, cfw_5, 6
PB = cfw_1, cfw_2, 3, cfw_4, 5, cfw_6
Suppose

212.339 Game theory and Applications
In Ho Lee
Homework 2
(due on 2016, October 4)
1. Find the set of Nash equilibria of each player in the two-player game in the following figure.
a1
a2
a3
a4
b1 b2
0,7 2,5
5,2 3,3
7,0 2,5
0,0 0,-2
b3
b4
7,0
0,1
5,2
0,1
0

212.339 Game theory and Applications
In Ho Lee
Homework 4
(due on 2016, November 22)
1. Two people take turns removing stones from a pile of n stones, with player 1 moving first.
Each person may remove either one stone or two stones on each of her turns.

212.339 Game theory and Applications
In Ho Lee
Homework 5
(due on 2016, December 6)
1. Consider the following 2-player, seller-buyer signaling game. The game starts with a random
move by nature to determine whether the item the seller has is good or bad (

212.339 Game theory and Applications
In Ho Lee
Homework 3
(due on 2016, October 18)
1. Suppose that two players play each other for two periods. In the first period they play the
first game below, and in the second period they play the second game below.

212.339 Game theory and Applications
In Ho Lee
Homework 4
(due on 2012, November 20)
1. Two people take turns removing stones from a pile of n stones, with player 1 moving first.
Each person may remove either one stone or two stones on each of her turns.

212.339 Game theory and Applications
In Ho Lee
Homework 1
(due on 2015, September 22)
1. Suppose that the information partitions of two agents, A and B, are given as follows:
PA = cfw_1, 2, cfw_3, 4, cfw_5, 6
PB = cfw_1, cfw_2, 3, cfw_4, 5, cfw_6
Suppose

212.339 Game theory and Applications 2012 Autumn
In Ho Lee
Final Exam
(2012, December 6)
1. Carbon emissions trading works by setting a quantitative limit on the emissions produced
by emitters. In an emissions trading system, permits may be traded by emit

212.339 Game Theory and Applications 2006
In Ho Lee
Final Examination
December 13, 2006
1. If the stage game has unique Nash equilibrium, how many subgame perfect equilibria
does a two-period repeated game have? Would your answer change if there were T
pe

212.339 Game theory and Applications 2006
In Ho Lee
Mid-Term Examination
October 24, 2006
1. Two communities, A and B are located on the shore of the same lake. Each year, each
community decides, how much to invest in pollution reduction. The reduction le

212.339 Game theory and Applications 2010 Autumn
In Ho Lee
Final Exam
(2010. Dec. 9)
1. We have an employer and a worker, who will work as a salesman. The worker may be
a good salesman or a bad one. If he is a good salesman, he will make $200,000 worth of

212.339 Game theory and Applications 2008 Autumn
In Ho Lee
Midtern1 EXan1
(October 28
2008)
1. Two drivers
player 1 and player 2
are simultaneously approaching an intersction
from different directions. They may choose to stop (S)
or continu (C)
at the
in

212.339 Game theol
In Ho Lee
and Applications
2008 Autumn
Final Exam
(December 9
2008)
1. Two firn1s compete in a marke t.
Let q I and q2 be the production quantities of finn 1
and finn 2 respectively. Assume that firm 1 can only c~100se ql = 10 or ql =

212.339 Game theory and Applications
In Ho Lee
Homework 3
(due on 2015, October 20)
1. Suppose that two players play each other for two periods. In the first period they play the
first game below, and in the second period they play the right game below. T

212.339 Game theory and Applications
In Ho Lee
Homework 2
(due on 2014, October 7)
1. Find the set of Nash equilibria of each player in the two-player game in the following figure.
a1
a2
a3
a4
b1 b2
0,7 2,5
5,2 3,3
7,0 2,5
0,0 0,-2
b3
b4
7,0
0,1
5,2
0,1
0

212.339 Game Theory and Application
(Autumn, 2016)
Course Description
This course develops basic tools of Game Theory. It builds up a framework for the analysis of strategic behavior among multiple agents. Central in the developments are choice
under unc