M273, Quiz # 1
KEY for quiz given August 30; 2013
1. (2 pts.) Vectors '17 and 117 are given on the
axes provided. Accurately draw m clearly label
o
position vectors for each of 17 + If} and 17 ~ w.
2. (4 pts.) Given 11': (1,1,0) ,
(a) nd 51,:
(b)
M-273, Quiz # 6
KEY for quiz given November 1; 2013
1. (4 pts.) Evaluate: (x2 +3y)z dV where B = [0,1] X [22] x [3,0]
(fax/)2 cl%cl\/le,=: '§%d%)(3 §(Xl+ 3y)qu oh)
0 '1 3 {gm 9; ix)
= gasM é (2 WWW) Ax)
: (3-H w on) -<~%>(i§):
: (ééio ~o>
- (a
\:l
1 W m
M-273, Quiz # 5
KEY for quiz given October 11; 2013
1. (2.5 pts.) Calculate the directional derivative in the direction of 17 = (1, 1, 1) at the point
P = (1,2,0) on the surface g(:r, y, z) = xeyz.
Ba 8(9) : Vapy";
=zi,o,~9>'<v%.r§,%>
- JHiL
M
:_L.\
l?
82
M273, Quiz # 4
KEY for quiz_given October 4, 2013
1. (2 pts.) Find the domain, D, of the given func-
tion, then clearly sketch this domain on the axes
provided.
f(=v,y) =1n($ - 1)va ~ y
§mr m%v&\ \Da:
x|>o
x>l
grow woaw 00+:
2.
xy 20
xlzy
Oomhx 1 s C(OS
Math 273, Fall 2013 Name; '_._[<_e7y_
EXAM II: Friday, October 18, 2013
SHOW ALL WORK FOR FULL CREDIT! USE PROPER NOTATION.
1. Calculate the indicated partial derivative.
(a) gfI for f(a:,y)=xln(:l:+y') 3; gw
MM
z \ -l
(b) hm for hzzy ha: arx :
M~273, Quiz # 3
KEY for uiz iven Se tember 13 2013
1. (2 pt.) (a) State the type of quadric surface represented by + (yr 522 = 1.
Bespecic. 5
Hpuboloid 0 one. sheet
rméor CAfo (5 ioous
2 .
w?
(1 pt.) (b) Describe the trace, if one exists, of intersecti