Euclidean Geometry
(Theorems in abbreviation for reference, Middle 1 to Middle 3) Theorem 1.
D If AOB is a straight line,
then
x A O y B
x + y = 180
(adj. s on st. line)
[ b p y
]
Theorem 2, 3 (converse of Theorem 1)
D
If x + y = 180,
then
A xy O B
AOB is
Mathematics Questions 1. Find the number of solutions ( x, y, z ) where x, y and z are positive integers, such that xyz = 9216 . Find all integral solutions ( x, y ) such that x 2 = y 2 + 2001 . If a 3 = 150b , and a, b are positive integers, find the min
Mathematics Questions
1. Find the number of solutionswhere x, y and z are positive integers, such that.
2. Find all integral solutionssuch that .
3. If , and a, b are positive integers, find the minimum value of b.
4. If, find.
5. If, find A.
6. Let n be
Partial Fractions Steps of separating a fraction into partial fractions: 1. Factorize the denominator 2. Assume that the equation can be separated into partial functions of the form of equation (*). 3. Add the two partial functions. 4. By substituting sui
Cramers Rule Examples of solving equations by Cramers Rule
When solving x,
Consequently,
Therefore, if you want to solve for x, simply substitute the column of the coefficient of x to the value of the corresponding equation. Use the same method to solve y
Oct 4, 1996
1
Lecture 1
G
z\
;, 6x 6 ! @ f A ; @, x A X /, |L A B S, w 6 A 7 x s, j]QA< , 0S f , J j]Q MPA 66 :. +4 I 6 Au., W6A , I66S q6, W66S q6A:.
4 > 6?J A
]>F) ]6W6 ;. , y~ NIL OZ. y OANC, I] !ALhq 2 EA, I%KL*A]Z L,C~, &@ A6 uT. 6 1, A0>X * I AC~ K.
Oct 9, 1996
1
Lecture 2
z\
y OAL 5, 6 LN S J4_y ;A W68L sT`. +4* 5s, " 6W 6,N6 W 6,N= W 6 d d. 6 x \ y W 6 % (elementary functions). y W6 IQ~+, Y6 k S !8 A]g h. +4 UPA . x, S I | L 3 u Y W 6 A.
Fig 15
I UQA]g3 E@
,
I|L3uYW6
A.
Fig 16
#I, + |16Q @, cfw_y u