Math 567 Homework 6
Fall 2012
Due: Friday, October 12
1. (5 points) Let m = 1 be a square-free integer. Let K := Q( m).
(a) List the possible factorizations of (p) in OK . Justify your answer.
(b) Sho
Name 1, E-mail 1
Name 2, E-mail 2
Course
Date
Example of simple report
First I will tell you some small things how a report should be written,
even if its a simpler report. For a complete example of a
Appendix B: Sample Inspection Report
Instructions
This sample inspection report has been developed as a helpful tool to aid you in completing your
site inspections. This sample inspection report was c
Sample Investigative Report
_ COUNTY SCHOOLS
INVESTIGATION REPORT
(CONFIDENTIAL)
To: _ [Attorney, if involved otherwise Superintendent]
From: _
Re: John Young [Employee who was investigated]
The under
Delivering Excellent Student Assessment Using Core Criteria
ILTHE Conference, 29.6-1.7.04
Workshop Report
This report presents a summary of the feedback received from participants at the workshop,
Del
Math 567 Homework 8
Fall 2012
Due: Friday, October 26
1. Marcus, Exercise 5, (a)(c), page 115: Let L/K be an extension of number elds such
that L is Galois over K with Galois group G. Let p be a prime
Math 567 Homework 9
Fall 2012
Due: Friday, November 2
1. Marcus, Exercise 3b, page 114: Complete the proof of the quadratic reciprocity law.
(You may assume part (a).)
In particular, prove that the qu
Math 567 Homework 2
Fall 2012
Due: Friday, September 14
1. Let A be an integrally closed domain, and let K be its eld of fractions. Let f (X )
A[X ] be a monic polynomial. If f (X ) is reducible in K
Math 567 Homework 1
Fall 2012
Due: Friday, September 7
1. Show that Z[ 5] is not integrally closed, and deduce that cannot be a unique facit
torization domain. Give an example of an element of Z[ 5] t
Math 567 Homework 10
Fall 2012
Due: Friday, November 16
1. (5 points) Marcus, Exercise 23, page 123: Let V1 be the ramication group dened in
Problem 4 on Homework 9, and use the same notation as in th
Math 567 Homework 11
Fall 2012
Due: Monday, December 3
1. (5 points) Prove that the ideal class group of Q[ 21] is the Klein four group.
2. (5 points) Let K := Q[ 1, 5]. Show that OK = Z[ 1, 1+2 5 ].
Math 567 Homework 7
Fall 2012
Due: Friday, October 19
1. (5 points) Marcus, Exercise 1, page 114: Show that E (Q|p) is a normal subgroup of
D(Q|p) directly from the denition of these groups.
2. (10 po
Math 567 Homework 12
Fall 2012
Due: Wednesday, December 12
1. (10 points) Marcus, Exercise 33, page 152.
2. (5 points) Let | | be a nonarchimedean absolute value on a eld K .
(a) Dene an open disk wit
Math 567 Homework 3
Fall 2012
Due: Friday, September 21
1. Show that the ring of integers OL of a number eld L is the largest subring of L that
is nitely generated as a Z-module.
2. For n > 1 an integ
Math 567 Homework 4
Fall 2012
Due: Friday, September 28
1. Let f (x) = x3 + ax + b with a, b Z, and assume f is irreducible over Q. Let be a
root of f .
(a) Show that f () = (2a + 3b)/.
(b) Show that
Math 567 Homework 5
Fall 2012
Due: Friday, October 5
For this homework you may use the results in Marcus up to (and including) page 71.
1. Let K be any eld and let L be a nite separable extension of t
Reporting Template
First Needs Assessment Reporting Template
When an emergency unfolds, collecting information on the needs of the affected population is a
crucial step for quickly orienting the respo