PROBLEM 3.51
KNOWN: Pipe wall temperature and convection conditions associated with water flow through the pipe and ice layer formation on the inner surface. FIND: Ice layer thickness . SCHEMATIC:
ASSUMPTIONS: (1) One-dimensional, steady-state condu

AISI Type 410S Stainless Steel, tempered at test temperature plus 28C, tested at 21C (70F)
Categories: Material Notes: Metal; Ferrous Metal; Stainless Steel; Heat Resisting; T 400 Series Stainless Steel 16 mm diameter bar, heated to 980C for 30 min.,

PROBLEM 11.1
KNOWN: Initial overall heat transfer coefficient of a fire-tube boiler. Fouling factors following one year's application. FIND: Whether cleaning should be scheduled. SCHEMATIC:
ASSUMPTIONS: (1) Negligible tube wall conduction resistance

PROBLEM 6.1 KNOWN: Variation of hx with x for laminar flow over a flat plate. FIND: Ratio of average coefficient, h x , to local coefficient, hx, at x. SCHEMATIC:
ANALYSIS: The average value of hx between 0 and x is hx = hx hx Hence, 1 x C x h x dx

PROBLEM 5.1 KNOWN: Electrical heater attached to backside of plate while front surface is exposed to convection process (T,h); initially plate is at a uniform temperature of the ambient air and suddenly heater power is switched on providing a constan

PROBLEM 3.101
KNOWN: Dimensions of a plate insulated on its bottom and thermally joined to heat sinks at its ends. Net heat flux at top surface. FIND: (a) Differential equation which determines temperature distribution in plate, (b) Temperature distr

PROBLEM 3.1 KNOWN: One-dimensional, plane wall separating hot and cold fluids at T,1 and T ,2 , respectively. FIND: Temperature distribution, T(x), and heat flux, q , in terms of T,1 , T,2 , h1 , h 2 , k x and L. SCHEMATIC:
ASSUMPTIONS: (1) One-dim

PROBLEM 2.1
KNOWN: Steady-state, one-dimensional heat conduction through an axisymmetric shape. FIND: Sketch temperature distribution and explain shape of curve. SCHEMATIC:
ASSUMPTIONS: (1) Steady-state, one-dimensional conduction, (2) Constant prop

PROBLEM 1.41
KNOWN: Hot plate-type wafer thermal processing tool based upon heat transfer modes by conduction through gas within the gap and by radiation exchange across gap. FIND: (a) Radiative and conduction heat fluxes across gap for specified hot

PROBLEM 1.1 KNOWN: Heat rate, q, through one-dimensional wall of area A, thickness L, thermal
conductivity k and inner temperature, T1. FIND: The outer temperature of the wall, T2. SCHEMATIC:
ASSUMPTIONS: (1) One-dimensional conduction in the x-dire