Elements of Physics, 50:750:131 Name _ Test 1 October 10, 2005
The working for all solutions must be shown. No credit will be given for an answer with no working. Take g to be 9.80 m/s2. 1. An astrono
Little Note on Fierz
What is ( ) ( ) ?
If = , only 0 = and 3 = (1)+1 contribute, giving
1 (1)+ = 2 (1 ) = 2
for = .
If = , only 1 and 2 can contribute, in which case only = gives
nonzero, and then
1
Last Latexed: November 8, 2007 at 10:28
1
Schwinger trick and Feynman Parameters
Copyright c 2005 by Joel A. Shapiro
Here is the way Schwinger presented the method of combining propagators. An interes
Stress-Energy tensor for Maxwell Theory
Joel A. Shapiro
Maxwells theory of electromagnetism can be expressed in terms of a
4-vector eld A , coupled to a current j due to matter elds. The Lagrangian de
Last Latexed: September 26, 2011 at 8:51
1
An extra note on Noethers Theorem
I was asked to clarify the connection of conserved charges emerging as a
consequence of a symmetry and the generator of tho
Faddeev-Popov ghosts
In evaluating the functional integral over gauge elds, we found that
we could add a gauge-xing term to the Lagrangian which would make the
integrals better dened and evaluatable i
Some Comments on P&S treatment of BRST
Below 16.49
That Q2 vanishes on B and on c is trivial, the rst killed by the rst Q and
the second converted by the rst Q into a B and then killed by the second
Q
Generating Functions for Diagrams
Joel Shapiro
April, 2002
The partition function and the energy functional
Before we continue with the computation of the eective action, lets review
the meanings of t
PHYS 52 Exam#l
Scoref or t his p roblem:
Studentname:
1. ( 20p oints, 'each ection) hel efte ndo f a l ongg lassr od,1 0.00 m i n d iameter,
5
s
T
c
hasa c onvex emispherical
h
s urface .00c m i n r a
The beta function B (x, y )
Joel Shapiro
The Beta function is dened, for Re > 0, Re > 0, as
1
B (, ) =
0
dx x1 (1 x) 1 .
To evaluate this, consider
( + )B (, ) =
=
=
=
=
0
0
0
0
0
1
t+ 1 et dt
t
t 1 e
Last Latexed: January 26, 2010 at 11:21
1
Notes on Bessel Functions
Joel A. Shapiro, based on Arfken 3rd Edition
Bessel functions Jm (x) of integral order m may be dened by the generating function g (
CHAPTER 3 KINEMATICS IN TWO DIMENSIONS
CONCEPTUAL QUESTIONS
_
1.
REASONING AND SOLUTION In addition to the x and y axes, the z axis would be required to completely describe motion in three dimensions.
CHAPTER 4 FORCES AND NEWTON'S LAWS
OF MOTION
CONCEPTUAL QUESTIONS
_
1.
REASONING AND SOLUTION When the car comes to a sudden halt, the upper part of the body continues forward (as predicted by Newton'
GENERAL PHYSICS I
COURSE: 21:750:203:B1 General Physics I Summer 2008
CLASS MEETS: M, T, W,TH Instructor: Office: Telephone: Dr. John Rollino 357 Smith Hall 353-1573 (office) 10:15AM 12:30 in Smith 22
PHY 205 Summer 2008
LAB SCHEDULE Lab Text: M Memorial Day Observed. University closed. 6/2 Geiger counter data presentation II 6/9 Motion II J. Rollino. Laboratory Notes for Introductory Physics. T 5/
Physics 235 Chapter 8 Central-Force Motion
Chapter 8
In this Chapter we will use the theory we have discussed in Chapter 6 and 7 and apply it to very important problems in physics, in which we study t
Physics 235 Chapter 9 Dynamics of a System of Particles
Chapter 09
In this Chapter we expand our discussion from the two-body systems discussed in Chapter 8 to systems that consist out of many particl
Lightning review of groups
Copyright c 2005 by Joel A. Shapiro
We are going to be very concerned with symmetries of our theories, and symmetries form a group. I want to give a lightning review of what
General Physics
I.
Introduction to Physics- The goal of physics is to gain a deeper
understanding of the world in which we live
a. Physics and the laws of naturei. Physics- study of the fundamental la