CS 315: Algorithms and Data Structures
Gordon S. Novak Jr.
Department of Computer Sciences
University of Texas at Austin
[email protected]
http:/www.cs.utexas.edu/users/novak
When you tell women youre really good at
algorithms, it doesnt do much. Aaron
, _ k44wag_;_§_ Q
WV?“
_ _
f ' °
,
_ r_,_r.,._ _. _ _ ._ .
Miting Wm” i a _
'7 " s’aW é.-
“151$:iffibB‘TenVﬁj 92.7);11QN? fajfi‘LOL‘? ‘
ngeﬁ._s_€_mir‘in33M ,ﬁ ﬁ _ , _ _ za M
ii
A Semirin (S,@,o,6,T) is a ring. if
(5‘) Vae
CS 6363: Algorithms Fall 2015
Homework #2 Due: Sept. 28
Professor D.T. Huynh
Problem #1. Given an array of integers A[1.n] such that |A[i] A[i + 1]| 1 for all i =
1, . . . , n 1. (That is the values of adjacent elements dier by at most 1.) Let x = A[1] an
CS 6363: Computer Algorithms Fall 2015
Homework #1 Due: Sept.9
Professor D.T. Huynh
Problem #1. Do Problem # 2-4 (Inversions), p. 41 [Text].
Problem #2. Compare the following pairs of functions f (n), g(n) in terms of order of
magnitude. In each case dete
H
z Chaﬂ 1. In {radar/Hon
if We are, comPdehbnaﬁ/decisc‘on
'EProbtamg :
_ ComchZ Maximum gf :1 numbers,
_ 804116 In flaws in nomdecreasing order,
_ Compuiz prodac'f' gr .2. binary inkgews,
._ wheJ—hcr a given inkaer is Prime.
For exampez soreh‘ng can be f