} ,
04 y 4 it: e, I
Problems for Section 1.2 J
(1) Give an example of a set; whose only eccumuletion points are Z 2 the \
integers. i:;,;a-,~ tilt?!
(2) Prove that if S C R is bounded above and sup(S) is not contained in S, r:--E?< 9% X it!)
the
0/ r1 *§\\% '42:).333 éLiisx'lF J63??? /¥i)b{z>{) : 0
Kw? o
I? '5 v r f I
AM; 57) 3% W m X I;""£.C""E
§> I: (r-{u {0" >%;~%5 3/ W- I ,
\ V
I5
«3) } Jim WM X 3 with. fg (LG H EEK A g
m U K x f - (u
//,«j:14-'7 Mx) .:::: (j
,
Math 320
Weekly HW1: Properties of Real Numbers
8302016
Reading Assignment: Chapter 1 of Abbott (pp 137)
Problem 1: (Supremum Under Unions)
Let A1 , A2 , A3 , . . . be a collection of nonempty sets, each of which is bounded above.
S
a) Find a formula for