Introduction to Scientific, Symbolic, and Graphical Computation
CSC 260H1

Spring 2011
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
This procedure finds a zero of a function using bisection. The parameters
are an expression in an unknown defining the function, the name of the
unknown, a range known to contain a zero, and a tolerance value for the
Introduction to Scientific, Symbolic, and Graphical Computation
CSC 260H1

Spring 2011
#
#
#
#
#
#
#
#
#
#
#
#
This procedure evaluates an integral numerically, using an approximation
based on a grid of 'n' rectangles, with heights given by the function value
at the midpoint of their base. The parameters are an expression defining
the funct
Introduction to Scientific, Symbolic, and Graphical Computation
CSC 260H1

Spring 2011
#
#
#
#
Find a circular CatmullRom spline. The parameters are the list of
data points, and the variable to be used as the unknown in the
polynomials. The result is a piecewise polynomial function
(packaged up by the Maple piecewise function).
circspline
Introduction to Scientific, Symbolic, and Graphical Computation
CSC 260H1

Spring 2011
FueF!vdFdX cG U Y b V Ew %W00dpXacQUabdUXSI w Y b G i f c C V PG P YTEP T b iG E wI VU P TEI V IPT E wI IP YG G P YTEP T b iG E w SIQWE%3quFFdUWsaEhgRHWUs0XSW0`gRgESh%pXSSFacWd3sEhgSWUs0XSI VU c YI YTPE bGTE cE T CUi Y E w i f bIETTU Y wI E cU EG w CUi I
Introduction to Scientific, Symbolic, and Graphical Computation
CSC 260H1

Spring 2011
dQbYUTYI`3dF%YT%QUTYiThWYW3QaT0cWUYQUiso3TvUYGUcQVvvdRUUv~cdU3WUD ba DRa FXa b VX e H rR yV RF ea FR bFX F V Pa H r iRF D b H PF r R r H P Ra F F VR H H ba b P a y a X y XF V e X b V HXVR X y H y a a r Pa e V XF V e F r hgWdRGQPdVQbYcfw_Gd%cVU#vhFY
Introduction to Scientific, Symbolic, and Graphical Computation
CSC 260H1

Spring 2011
R hf h y p ca faU h yU yf v %ibbBs5Tb9W(gbxtdsc g5ubgi9(xP9ifb`b9bQ3Yb9'gi9geBi5Piurbscu5iuw w eUa peeU c qc w p f c y U h yU aff vc U af qU y wUaf y c c ` c f p ca f w h y cef f f pa w w e Ua pee U q c U w pf 3b$s$c3Busbsdbu7bsgi7b7bdurBtYsI9ubgi99scyBid