1
Mathematics 62-216 Sections 01 & 02
Mini-Test #1, Feb. 5, 2010
Family Name:
(50 minutes)
Given Name:
Student ID:
1. (10 marks) Show that the dierential equation
(yey + 2) dx + (xey + xyey + 1) dy = 0
is exact, and solve the equation.
Solution. Let M (x,
Mae 3 at v9": C0, 00? Ca ,3} £332 93 [9J7
\ (mm 19°r0(§<>-V P953?
fQWH MIMWWE MA? Xbizwl % L. f" p é®
W (3? M 3% Emma and) m 4 are, how,
W V\ EC Ca>°3 04/020 Ox (1%
K? W 40 VQWW $44 chm/x Email,
Wbog MW? Vi Ermcwma >
¥o+£
[217% $29 cw nae/QR; 9.3
MATH 62416
Differential Equations
TEST 1
/' )hmtlon: Oin'l Y/
: '/7 7; I14
Page 1
February 15. 2007
FAMILY NAME GIVEN NAMES
STUDENT NUMBER
Instructions: No hooks, notes, or calculatnm nllowctl. This test rnunts for 15% of the nal grade in
1
Mathematics 62-216 Sections 01 & 03
Mini-Test #2A, Feb. 15, 2008
Family Name:
(45 minutes)
Given Name:
Student ID:
1. (10 marks) Solve the dierential equation
(xy + y 2 + x2 ) dx x2 dy = 0
by using an appropriate substitution.
Solution. The dierential e
MATH 152-216-431, 03
Mini-Test #4A (45 minutes)
April 4, 2008
FAMIL Y NAME: FIRST NAME:
UWIM
l. ([0 Marks) Find the general solution of the ODE
2. n r
x - 5x + 9 I In x.
METHOD I y y y
A 1. Z
Ld xt 5 ODE LZWWS %l-%-%+q3=u igglzsé'itru
aha.
WW-[é mambo
1
Mathematics 62-216 Sections 01 & 02
Mini-Test #2, March 5, 2010
Family Name:
(50 minutes)
Given Name:
Student ID:
1. (a) (3 marks) Write out the denition of a fundamental set of solutions for
a homogeneous linear nth-order dierential equation on an inte