INDIVIDUAL ASSIGNMENT
Tran Ngoc Thuy Van BBC1
ID: 3913ISB1049
1
INDIVIDUAL ASSIGNMENT
a)
Peter is known as an accountant (CA) and also the financial control of Yang Pty Ltd. The
company import and distribute only one product with a number of company emplo
Chapter 5: Balance sheet
Current-ASSET: Cash and cash equivalents: cash at bank, on hand and in transit, cash on
deposit-Trade and other receivable: good and services tax GTS, non-trade receivables, loan to
other persons, employee share plan loans.-Invent
200184 Introduction to Business Law
ASSIGNMENT QUESTIONS (Q1 2016)
Attempt all Questions
Total Marks: 30
Due Date: 09 March 2016 by 11:59PM
Question 1
Johnny offered to sell his server to Richard for $ 2000, saying he would keep the offer open
for 3 days.
In todays modern society, managing diversity is increasingly popular and more interesting for
private companies, public institutions and non-profit. Simply stated, diversity management is to
recognize, utilize different personnel such as gender, race, edu
Starbucks Coffee Company is one of the leading companies in the green coffee
beans of high quality. The company was founded in 1971 in Seattle, Washington
by three partners Jerry Baldwin, Zev Gordon Bowker and Seigl. The company
brewed coffee Sells dip, h
SCHOOL OF
SHEET
STUDENT DETAILS
Student
name:
UNIT AND TUTORIAL DETAILS
Unit
name:
Tutorial group:
Lecturer or Tutor
name:
ASSIGNMENT COVER
Student ID
number:
Unit
number:
Tutorial day and
time:
ASSIGNMENT DETAILS
Title:
Length
Due
:
date:
Home campus (wh
SCHOOL OF
STUDENT DETAILS
Student
name:
UNIT AND TUTORIAL DETAILS
Unit
name:
Tutorial group:
Lecturer or Tutor
name:
ASSIGNMENT COVER SHEET
Student ID
number:
Unit
number:
Tutorial day and
time:
ASSIGNMENT DETAILS
Title:
Length
Due
:
date:
Home campus (wh
ASSIGNMENT
Question 1
Johnny offered to sell his server to Richard for $ 2000, saying he would keep the offer open for 3
days. The next day Johnny phoned Richard and said he was withdrawing the offer because he
had received an offer of $2500 from Mary. Ri
Chapter 2
Commercial banks
Learning objective 2.1: evaluate the functions and activities of commercial banks within the
financial system
Commercial banks are the largest group of financial institutions within a financial system and
therefore they are very
19.9. FINAL SALARY SCHEMES
313
has to be added.
On defining the commutation
functions
s ra
xra and s R
xra = P64x s M
ra
Mx = sx M
x+t
t=0
and using a similar argument to that used for ill-health retirements, the value of the F.S.P. is
found to be
SAL
18.5. SOLUTIONS
301
Appendix: The Manchester Unity Experience 1893-97
1. Until fairly recently, when the C.M.I. published statistics concerning P.H.I. (Permanent Health
Insurance), the principal published set of sickness rates were those derived from the
302
CHAPTER 18. SICKNESS FUNCTIONS
next. The experience of occupation group AHJ is given in Tables for Actuarial Examinations.
Since the middle classes and well-to-do did not (in general) join friendly societies providing
sickness benefits, this represent
19.5. THE VALUE OF FUTURE CONTRIBUTIONS
307
R
x = 1 Dx+t dt ' Dx+ 1 ' 1 [Dx + Dx+1 ]
D
2
0
2
s
x
Dx = sx D
and P
64x
s
Nx = t=0 s D
x+t
One can now evaluate (19.5.1) by means of commutation functions, giving a mean present value
of
1
64x x+t+ 2
.lx+t+
314
CHAPTER 19. PENSION FUNDS
Define the commutation functions
z
z
Cxia = zx+ 12 Cxia ,
Mxia =
64x
X
z
C ia
x+t ,
t=0
z
and
z
1 z ia
xia = z M ia
M
C ,
x
2 x
64x
X
ia =
R
x
z
ia
M
x+t =
64x
X
t=0
1
(t + )z C ia
x+t
2
t=0
(note similarity to definition
308
CHAPTER 19. PENSION FUNDS
payable continuously. Then the mean present value of future contributions is
Z 65x
lx+t
F
vt
dt
lx
0
64x
X
1 lx+t+ 1
2
'F
v t+ 2
l
x
t=0
=F
64x
X
Dx+t+ 12
t=0
Dx
64x
X
1
x+t
D
Dx t=0
Nx
=F
Dx
'F
(19.5.3)
x = P64x D
x+t .
312
CHAPTER 19. PENSION FUNDS
Thus the benefits can be separated into the Past Service Pension and the Future Service Pension.
Value of P.S.P.
1
This is just the value of a fixed pension of 60
(T.P.S.) so, using the functions defined in the
previous secti
18.5. SOLUTIONS
299
(b) Let extra premium be E per week.
The equation
of value for E is
K40 K50
(E + 3.25)
= 52.18 0.9E
a40:10
D40
Therefore (E + 3.25) 13.077 = 382.67E
and so
E = 0.115,
say 0.12.
Hence revised premium is 3.37 per week.
18.4
(a) Let weekl
19.12. RETURN OF CONTRIBUTIONS ON DEATH OR WITHDRAWAL
319
(see the Appendix to this Chapter.)
Note
When j = 0 one may omit the j from the commutation functions, so if contributions are returned
without interest their mean present value is
(T P C)
Mxw
k SA
318
CHAPTER 19. PENSION FUNDS
Example 19.11.1. A company has a pension scheme which provides a pension upon retirement
1
of 80
th of the final salary per year of service. In addition the sum of 10,000 is paid on death in
service of a member. If all contri
19.4. SALARY SCALES
305
Using approximate integration in (19.4.2), we have
sx ' sx+ 12 '
1
[
sx + sx+1 ]
2
(19.4.3)
Formulae and Tables gives values of sx (not sx ), so we find sx by linear interpolation:
sx '
1
[sx1 + sx ] ' sx 12
2
(19.4.4)
Note
To esti
19.8. AVERAGE SALARY SCHEMES
311
Again, this may be separated into the P.S.P. and the F.S.P. terms.
Define the commutations
(
1
v x+ 2 rx a
rx+ 1 , x < 65
ra
2
Cx =
v 65 r65 a
r65
, x = 65
P
65x ra
(note the summation is up to 65 x)
Mxra = t=0 Cx+t
xra =
19.11. DEATH AND WITHDRAWAL BENEFITS
19.11
317
Death and Withdrawal Benefits
The benefits on death in service usually consist of one or more of:
1. a fixed sum, or a certain multiple of salary;
2. a return of the employees contributions, accumulated at a
304
CHAPTER 19. PENSION FUNDS
member who has not yet retired).
The reserve for each member is calculated prospectively. That is,
reserve = mean present value of future benefits - mean present
value of future contributions (of both employee and employer)
N
Chapter 19
PENSION FUNDS
19.1
General Introduction
Pension schemes may be described (in broad terms) as either:
(a) defined - benefit schemes,
or
(b) defined - contribution schemes.
Defined - benefit schemes
These are pension schemes whereby the pension a
320
CHAPTER 19. PENSION FUNDS
Solution
1. Let k be total contribution rate per cent for a new member aged 20. Then
k SAL s
SAL z (i+r)a
i+r ]
N20 =
[ R20
+ 3.z R
20
100 s20 D20
80
s20 D20
Thus
100
k=
80
"
z
i+r
(i+r)a + 3.z R
R
20
20
sN
20
#
= 7.443.
316
CHAPTER 19. PENSION FUNDS
(a) If n < 40, then leave the P.S.P. unchanged but restrict the F.S.P. . In the final salary scheme
mentioned above, the value of the F.S.P. is altered to
SAL z (i+r)a z (i+r)a
Rx
Rx+40n
80
sx Dx
(19.9.5)
(b) If n 40, then
306
CHAPTER 19. PENSION FUNDS
(iv) Annual salary rate at 64 is 9192 ss64
' 27, 499
25
s64 1
Annual salary rate at 64 21 is 9192 s252 ' 27, 576
Hence by linear extrapolation the annual salary rate at age 65 is approximately
27, 576 + (27, 576 27, 499) = 27
310
CHAPTER 19. PENSION FUNDS
It follows that
xia =
R
64x
X
1 ia
(t + )Cx+t
2
t=0
Proof.
ia
ia
xia = M
xia + M
x+1
64
R
+ . + M
1
ia
ia
= ( Cxia + Cx+1
+ . + C64
)
2
1 ia
ia
ia
+ ( Cx+1
+ Cx+2
+ . + C64
)
2
+ .
1 ia
+ C64
2
1 ia
1 ia
1
= Cx + 1 Cx+1