160
CHAPTER 2
Axially Loaded Members
Stress Concentrations
The problems for Section 2.10 are to be solved by considering the stress-concentration factors and assuming linearly elastic behavior. Problem 2.10-1 The flat bars shown in parts (a) and (
144
CHAPTER 2
Axially Loaded Members
Problem 2.7-9 A slightly tapered bar AB of rectangular cross section and length L is acted upon by a force P (see figure). The width of the bar varies uniformly from b2 at end A to b1 at end B. The thickness t
134
CHAPTER 2
Axially Loaded Members
Problem 2.6-16 A prismatic bar is subjected to an axial force that produces a tensile stress 63 MPa and a shear stress 21 MPa on a certain inclined plane (see figure). Determine the stresses acting on all faces
122
CHAPTER 2
Axially Loaded Members
Stresses on Inclined Sections
Problem 2.6-1 A steel bar of rectangular cross section (1.5 in. 2.0 in.) carries a tensile load P (see figure). The allowable stresses in tension and shear are 15,000 psi and 7,000
106
CHAPTER 2
Axially Loaded Members
Problem 2.5-3 A rigid bar of weight W 750 lb hangs from three equally spaced wires, two of steel and one of aluminum (see figure). The diameter of the wires is 1/8 in. Before they were loaded, all three wires h
80
CHAPTER 2
Axially Loaded Members
Problem 2.3-8 A bar ABC of length L consists of two parts of equal lengths but different diameters (see figure). Segment AB has diameter d1 100 mm and segment BC has diameter d2 60 mm. Both segments have length
2
Axially Loaded Members
Changes in Lengths of Axially Loaded Members
Problem 2.2-1 The T-shaped arm ABC shown in the figure lies in a vertical plane and pivots about a horizontal pin at A. The arm has constant cross-sectional area and total weight
32
CHAPTER 1
Tension, Compression, and Shear
Problem 1.6-10 A flexible connection consisting of rubber pads (thickness t 9 mm) bonded to steel plates is shown in the figure. The pads are 160 mm long and 80 mm wide. (a) Find the average shear strai
1
Tension, Compression, and Shear
Normal Stress and Strain
Problem 1.2-1 A solid circular post ABC (see figure) supports a load P1 2500 lb acting at the top. A second load P2 is uniformly distributed around the shelf at B. The diameters of the upper