Longest increasing subsequences and combinatorial probability
MAT 280

Winter 2009
MAT280: Longest increasing subsequences and combinatorial
probability
Dan Romik
UC Davis, Winter quarter 2011
Course description. If is a permutation, let L( ) denote the maximal length of
an increasing subsequence of . A famous problem studied since the
SECTION1
The Polytropic Equation of State
and
The Speed of Sound
.
Math280: A Mathematical Introduction
to
Shock Waves
Blake Temple , UCDavis
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
SECTION5
The Eigenfamilies and Simple
Waves of Compressible Euler
.
Math280: A Mathematical
Introduction
to
Shock Waves
Blake Temple , UCDavis
*
o
A rhq s l r u u \ u \ r Q $ S r n r . p \NA,VQ\ $on
dl nowict
\q\
=o
3t
 G ' \ , =o
a Su\ * Qu.*?)*
EfI
SECTION6
Laxs Local Solution
of the
Riemann Problem
for
nxn Systems of Conservation Laws
.
Math280: A Mathematical
Introduction
to
Blake Temple , UCDavis
@ R r e n Q n nP . b hl e n l o .
1
A,
?
,D $^, 1\ . Rt i y \ . , n n .o Il t n cfw_ u ' ( . C ' r
SECTION12
Conservative Difference Schemes
.
Math280: A Mathematical
Introduction
to
Shock Waves
Blake Temple , UCDavis
1
..
\.
a
Di$wt,ncfw_\ v h t t w \ (
t u nS tva\lr, P
e
nl
\of\s Lo.\^J
\
(
G v \* r o r l r r \ n l , r R ^ r , o n
r
fw s*rn*\wt^
SECTION13
The Glimm Scheme
.
Math280: A Mathematical
Introduction
to
Shock Waves
Blake Temple , UCDavis
a Ex , . $ v * c t( t r \ r v r ^ , n\rd1 , o d q b s )
:
f 'N
. toni\au qh nxv\ sg,\v* ,ll \ln(
,
1
2
o H e . e T \ l r , \ \ ( r \ t * n o \ .$ e