History of S-parameters S-parameters refer to the scattering matrix ("S" in S-parameters refers to scattering). The concept was first popularized around the time that Kaneyuke Kurokawa of Bell Labs wrote his 1965 IEEE article Power Waves and the Scatterin

MIT OpenCourseWare http:/ocw.mit.edu
2.161 Signal Processing: Continuous and Discrete
Fall 2008
For information about citing these materials or our Terms of Use, visit: http:/ocw.mit.edu/terms.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF MECHANICA

MIT OpenCourseWare http:/ocw.mit.edu
2.161 Signal Processing: Continuous and Discrete
Fall 2008
For information about citing these materials or our Terms of Use, visit: http:/ocw.mit.edu/terms.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF MECHANICA

MIT OpenCourseWare http:/ocw.mit.edu
2.161 Signal Processing: Continuous and Discrete
Fall 2008
For information about citing these materials or our Terms of Use, visit: http:/ocw.mit.edu/terms.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF MECHANICA

N AME_
Unified Quiz S6
April 22, 2004
One 81/2 x 11 sheet (two sides) of notes
Calculators allowed.
Calculators may be used for arithmetic only.
No books allowed.
Put your name on each page of the exam. Read all questions carefully.

1
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.011 Introduction to Communication, Control
and Signal Processing
Spring 2004
Second EVENING EXAM Wednesday, April 21, 7:30 PM 9:30 PM This is a closed bo

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ 1, March 15, 2005 Answer Booklet
Your Full Name: Recitation Instructor & Time :
at o'c

MIT OpenCourseWare http:/ocw.mit.edu
2.161 Signal Processing: Continuous and Discrete
Fall 2008
For information about citing these materials or our Terms of Use, visit: http:/ocw.mit.edu/terms.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICA

PRACTICE QUESTIONS FOR 15.561 FINAL EXAMINATION
Spring 2005
CLARIFICATION: This is not a practice final but a collection of questions similar to those likely to
be on the final.
COMPUTER FUNDAMENTALS PRACTICE QUESTIONS
Multiple-choice questions: SELECT TH

Functional characterization of petunia petal senescence related proteins by virus-induced gene silencing
1
Shuangyi Bai1, David Francis1, Belinda Willard2, Michael Kinter2 and Michelle L Jones1 Department of Horticulture and Crop Science, The Ohio State U

2
DISCRETE-TIME SIGNALS AND SYSTEMS, PART 1
Solution 2.1
x(n) is periodic if x(n)
the sequence in (a),
x (n + N) = A cos (27
x(n + N) for some integer value of N.
=
n+
N-
For
)
x(n + N) = x(n) if
N is an integer multiple of 27. The smallest
7
value of N f

THE DISCRETE-TIME FOURIER TRANSFORM
1.
Lecture 4 -
44 minutes
4.1
Sam ler
XA(t)
C/D
Relationship in the
time domain for a con
tinous-time signal, its
samples, and the re
sulting sequence
x(n) = xA(nT)
T=Tj
t
012345
n
012345
n
T=T 2 =2T,
t
0
t
T=T
T=T 2 =2

DISCRETE-TIME SIGNALS AND SYSTEMS, PART 2
1.
Lecture 3 -
50 minutes
3.1
d.
2.
Comments
This lecture continues the discussion of discrete-time systems. We
consider, in particular, the definitions for stability and causality,
first for discrete-time systems

INTRODUCTION
1.
Lesson 1 -
17 minutes
This lecture serves as an introduction to the course and is intended
to provide an indication of the importance and scope of the field of
digital signal processing. It is suggested that in addition to viewing
the lect

4
Convolution
In Lecture 3 we introduced and defined a variety of system properties to
which we will make frequent reference throughout the course. Of particular
importance are the properties of linearity and time invariance, both because
systems with the

5 Properties of Linear,
Time-Invariant Systems
Solutions to
Recommended Problems
S5.1
The inverse system for a continuous-time accumulation (or integration) is a differ
entiator. This can be verified because
d[
x(r) dr
=x(t)
Therefore, the input-output re

4 Convolution
Recommended
Problems
P4.1
This problem is a simple example of the use of superposition. Suppose that a dis
crete-time linear system has outputs y[n] for the given inputs x[n] as shown in Fig
ure P4.1-1.
Input x[n]
III
0
yi[n]
xn]
0
-1
Ou

2 Signals and Systems: Part I
Recommended
Problems
P2.1
Let x(t) = cos(wx(t + rx) + Ox).
(a) Determine the frequency in hertz and the period of x(t) for each of the follow
ing three cases:
21r
(i)
r/3
0
(ii)
3r/4
1/2
7r/4
(iii)
3/4
1/2
1/4
(b) With x(

18.03SC Unit 2 Practice Exam and Solutions
Study guide
.
1. Models. A linear differential equation is one of the form an (t) x (n) + + a1 (t) x +
a0 (t) x = q(t). The ak (t) are coefcients. The left side models a system, q(t) arises
from an input signal,

18.03SC Unit 2 Exam
.
.
1. (a) For what value of k is the system represented by x + x + k x = 0 critically damped?
[8]
(b) For k greater than that value, is the system overdamped or underdamped?
[4]
.
.
(c) Suppose a solution of x + x + k x = 0 vanishes a

6.450 Principles of Digital Communication
MIT, Fall 2009
Monday Dec 14, 2009
Final Exam
You have 180 minutes to complete the quiz.
This is an open-book quiz. You may use your book and six pages of notes. Calculators
are allowed, but probably wont be u

6.003 (Spring 2010)
May 20, 2010
Final Examination
Name:
Kerberos Username:
Please circle your section number:
Section
1
2
3
4
Instructor
Time
Peter Hagelstein
Peter Hagelstein
Rahul Sarpeshkar
Rahul Sarpeshkar
10 am
11 am
1 pm
2 pm
Grades will b e determ

6.003 (Spring 2010)
May 20, 2010
Final Examination
Name:
Kerberos Username:
Please circle your section number:
Section
1
2
3
4
Instructor
Time
Peter Hagelstein
Peter Hagelstein
Rahul Sarpeshkar
Rahul Sarpeshkar
10 am
11 am
1 pm
2 pm
Grades will b e determ

6.003 (Fall 2009)
November 18, 2009
Quiz #3
Name:
Kerberos Username:
Please circle your section number:
Section
1
2
3
4
Instructor
Time
Marc Baldo
Marc Baldo
Elfar Adalsteinsson
Elfar Adalsteinsson
10 am
11 am
1 pm
2 pm
Partial credit will b e given for a

6.003 (Fall 2009)
Final Examination
December 17, 2009
Name:
Kerberos Username:
Please circle your section number:
Section
1
2
3
4
Instructor
Time
Marc Baldo
Marc Baldo
Elfar Adalsteinsson
Elfar Adalsteinsson
10 am
11 am
1 pm
2 pm
Partial credit will b e g

6.003 (Fall 2009)
Final Examination
December 17, 2009
Name:
Kerberos Username:
Please circle your section number:
Section
1
2
3
4
Instructor
Time
Marc Baldo
Marc Baldo
Elfar Adalsteinsson
Elfar Adalsteinsson
10 am
11 am
1 pm
2 pm
Partial credit will b e g

6.01 Midterm 1: Fall 2009
Name: Solutions
Section:
Enter all answers in the boxes provided.
During the exam you may:
read any paper that you want to
use a laptop, but only to READ course material
You may not
search the web generally
run Idle or Python