CHAPTER 18
18.1
aAv AvIdeal
Av 5
T
1 T
120

AvIdeal
2x105
5.000
1 2x105

1
5  A 10 20 106  T A 2x105
1
FGE
5x10 6 or 5x10 4 %
1 T
60
bA 1020 1000  T 10000.2200
A
200
1
1
Av
5
4.975  FGE
4.98x10 3 or 0.498 %
1 A
1 200
1 T 201
3
10
1
cT 150.23  A
CHAPTER 17
17.1
17.2
17.3
Note that L = 18.1 rad/s does not satisfy the assumption used to obtain Eq. (17.15), and the
estimate using Eq. (17.15) is rather poor.
17.4
17.5
171
R. C. Jaeger and T. N. Blalock
07/15/10
17.6
17.7
172
R. C. Jaeger and T. N. B
CHAPTER 6
6.1
6.2
6.3
6.4
6.5
61
R. C. Jaeger & T. N. Blalock
02/22/2010
6.6
V REF
vI
AV
6.7
6.8
V H(3V)
v
O
Slope=+9
1.5V
1.5V
1.67V
vI
1.33V
V L(0V)
3V
V+
6.9
6.10
We would like to achieve the highest possible noise margins for both states and have the
CHAPTER 5
(5/12/10)
5.1
Base Contact = B
ntype Emitter = D
Collector Contact = A
ntype Collector = F
Emitter Contact = C
Active Region = E
5.2
vBC
iB

+
iC
C
B
+
V
+
E
vBE

iE
5.3
i
vBE
iB
V
+

E
E
+
B
+
v BC
51
C
iC
R. C. Jaeger & T. N. Blalock
01/3
CHAPTER4
4.1
(a) VG > VTN corresponds to inversion region operation. (b) VG < VTN corresponds to the
accumulation region. (c) VG < VTN corresponds to a bias in the depletion region .
4.2 (a)
(b), (c) & (d): Scaling the result from part (a) yields
4.3
Cd
CHAPTER2
2.1
Based upon Table 2.1, a resistivity of 2.83 cm < 1 mcm, and aluminum is a conductor.
2.2
Based upon Table 2.1, a resistivity of 1015 cm > 105 cm, and silicon dioxide is an insulator.
2.3
10 8 cm 2
7 A
I max
10
5
m
1
m
500 mA
2
cm 2
CHAPTER 15
15.1
151
R. C. Jaeger & T. N. Blalock
6/10/10
15.2
152
R. C. Jaeger & T. N. Blalock
6/10/10
15.3
This simulation uses Ac Analysis to find the differentialmode characteristics, Transfer Function
Analysis to evaluate the commonmode characteri
CHAPTER 7
7.1
7.2
V
( 5 V
)
D
D
B
n+
Ohm
ic
c ont
ac t
S
p +
P
7.3
7.4
7.5
(a) VH = 2.5 V, VL = 0 V
(b) VH = 1.8 V, VL = 0 V
71
R. C. Jaeger & T. N. Blalock
03/03/2010
M
7.6
(a) VH = 2.5 V, VL = 0 V
(b) Same as (a). VH and VL don't depend upon W/L in a
CHAPTER 13
13.1
13.2
13.3
(a) C1 is a coupling capacitor that couples the ac component of v I into the amplifier. C2 is a
coupling capacitor that couples the ac component of the signal at the collector to the output vO.
C3 is a bypass capacitor. (b) The s
CHAPTER 16
16.1
161
R. C. Jaeger and T. N. Blalock
7/05/10
162
R. C. Jaeger and T. N. Blalock
7/05/10
16.2
163
R. C. Jaeger and T. N. Blalock
7/05/10
16.3
16.4
164
R. C. Jaeger and T. N. Blalock
7/05/10
16.5
16.6
2
W W Kn'
a
Assume
active
region
opera
CHAPTER 9
9.1
9.2
9.3
9.4
9.5
With VBE = 0.7 and VBC = 0.3, the transistor is technically in the saturation region, but
calculating the currents using the transport model in Eq. (5.13) yields
At 0.3 V, the collectorbase junction is not heavily forwardbi
CHAPTER 3
3.1
31
R. C. Jaeger & T. N. Blalock 01/09/10
3  2 R. C. Jaeger & T. N. Blalock 01/09/10
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
The exponential doping results in a constant electric field.
3.13
3.14
3.15
Starting the iteration process w