Transformatxer L5 -
1. The functions f(t) have been
transformed functions In
\ \3
.n?
3351m>r| Q
26" "
iv 7'
>95 7» 9 a
" 5):n~¢
f .ef
31,.
1.» I'M-7°
.mmvmwmv r v r V , r
* '- MK) lug .x'
H0 > r; l
U > . . . . . . A
i A m Hf ' _ "v _ . 1H4,"
V
- o
2 in gum! If 3(1) = W; on) d. but) dCSCfIbC [he eccls Mu, fr L. and don thc graph of _\ »
3:C~ ZF." Qo-r' 'v_ I
Tmfmm u! Smmoidal Pumnons . F
(In fl [-J a; . n _ r _ y,
a '.'.zx'° A r
c 1 (fi v v01 ; v' ~.*a \
. . ,. . , . ,
'0. ! 'dnatua grow/,- "-t
M Ih 301 Applications of Rational Funetions
a .
' v t r . . M. i i »
y : f0) IS shown. The llOHrpeHlSS one \ 3|th -> or ill: :sLl and tin
1 The partial graph of the rational function
. horizontal asymptote has an equatlon _v : 1-
a State the equatio
Math ll) I Applications of lxponvntml liinr tmn'. Harrow
. Remember An exponential equation has an equation that Mr. he I/Illlltl llI iiir ir,rrr./ Ml! }, mil-iv r/ rill'l
(' are constants, and t' -l)
Exponential Growth: l/[)Il|"llllrll l) ' 11/
l ,1
.szf
n
- (u. ,:(*(]U
Man, 14, lummu.(mt-rattan. , 1y
[Hm Hm; I', .t ,I 9 I" 1-1]!,.1[1]/h|"} H, .; /<I4Hi'/n
D
v|. 1mm. /(., t. . 1,2,; ,1 \ «A v x4 ', um: r7!"
lath .1 MIHHLPI Iv
I I
. Humilruph- H H '; '/ 1,;Hv ' t
1 /-vul um] i I"! ' U i I; My; 3
law I I «nuullllmm
What do you noluzc wluen ynu ll'.t- ynlll l .ll- um. 1., . .ull ll|.ll( tlu- lullmmm-l
1 IOSIW) ° '09 (4) '-' and I: lug; l'. r 4)
THE PRODUCT LAW l()g;,(M x N) IUHUM Illa
eg Rewnte IOg43621$lht:munultwrulllqmllhm.
ego Rewrite I093 2 +
Math ll) 1 lunrlmrwnial ( Hunting lriru Iplr- ah'l lt't"i"' ( 1! "
lleltm- It With, work llitotiuli Hw r-mrrrplr'. and '11, NW -x.-Il,"il " H" "H:
I INLHINHLIi ( ()lllillll lrrm Iplt'
.'( .4. in. .\~
.\yv. it .
It ,
r l c 5
l
l A cellphone company sell
Mathematics 3071: Unit 2 . Lesson A — Assignment Booklet
Back to Baker Street.
I. .
Asstgmnent
Bookie! g - Complete the Back to Baker Street assignment. Refer to the Tips from
Scotland Yard located at the back of this lesson booklet to assist you
in comp
Generated by CamScanner
Generated by CamScanner
Generated by CamScanner
Generated by CamScanner
Generated by CamScanner
Generated by CamScanner
Generated by CamScanner
Generated by CamScanner
Chapter 6 Trigonometric Identities
Section 6.1 Reciprocal, Quotient, and Pythagorean Identities
Section 6.1
Page 296
Question 1
cos x
, non-permissible values occur when sin x = 0.
sin x
sin x = 0 at x = 0, , 2,
Therefore, x n, where n I.
a) For
cos x
si
Chapter 4 Trigonometry and the Unit Circle
Section 4.1 Angles and Angle Measure
Section 4.1
Page 175
Question 1
a) 4 is a clockwise rotation
b) 750 is a counterclockwise rotation
c) 38.7 is a clockwise rotation
d) 1 radian is a counterclockwise rotation
S
Chapter 2 Radical Functions
Section 2.1 Radical Functions and Transformations
Section 2.1
a)
x
1
2
5
10
b)
x
6
5
2
3
c)
x
3
2
1
6
d)
x
3
2
1
6
Page 72
Question 1
domain cfw_x | x 1, x R
range cfw_y | y 0, y R
y=
x 1
0
1
2
3
y=
x6
0
1
2
3
domain
cfw_x | x