Chapter 1: Hints and Selected Solutions
Section 1.3 (page 25)
1.4 Here are a few translations: 1. Cube(a) 4. Large(d) 7. Dodec(e) 10. BackOf(d, a) 1.7 Original false false true false true false Rotat
Chapter 3: Hints and Selected Solutions
Section 3.1 (page 70)
3.2 1. True 4. To see why this sentence is false, you may need to switch to the 2D view, since the label f is barely visible in the 3D vi
Chapter 4: Hints and Selected Solutions
Section 4.1 (page 104)
4.2 1. The truth table for (A B) (A B) is shown in Figure ?. Since all the entries under the main connective () are T, it shows that
Chapter 5: Hints and Selected Solutions
Section 5.1 (page 131)
5.1 The pattern From P Q and P, infer Q is valid. If P Q is true, then by the truth table for , at least one of P or Q must be true. B
Chapter 6: Hints and Selected Solutions
Section 6.2 (page 154)
6.2
6.4
1
6.9
Section 6.3 (page 161)
6.10 One of many possible counterexamples to the following argument is shown below. Cube(a) Cu
Chapter 7: Hints and Selected Solutions
Section 7.2 (page 183)
7.2 The truth table for this Exercise is shown below. Since all the entries in the main columns for each sentence are the same, row by r
Chapter 8: Hints and Selected Solutions
Section 8.1 (page 203)
8.1 1. Arming the consequent is invalid. 4. Weakening the Antecedent invalid. 7. Constructive Dilemma is valid. 8.4 Here is an informal
Chapter 9: Hints and Selected Solutions
Section 9.3 (page 234)
9.1 The rst four sentences:
9.2 Here is one possible way of xing up the odd numbered sentences:
1
Section 9.4 (page 238)
9.7 Accordin
Chapter 10: Hints and Selected Solutions
Section 10.1 (page 264)
10.1 The following lls in some of the rows for you. Be sure you understand these. Annotated sentence Truth-functional form 1. 4. 7. 10
Chapter 12: Hints and Selected Solutions
Section 12.3 (page 327)
12.1 The argument is valid and the proof is a good one. In the following, we repeat the proof, but being explicit about the proof meth
Chapter 14: Hints and Selected Solutions
Section 14.1 (page 371)
14.1 One way to do the You Try It is shown in the two worlds below. You should submit dierent looking worlds.
1
14.2
1. There is ex
Chapter 15: Hints and Selected Solutions
Section 15.1 (page 411)
15.1 Hint: The exercise is to test your understanding of the axiom of extensionality. According to that axiom, sets are identical if a
Chapter 16: Hints and Selected Solutions
Section 16.1 (page 449)
16.3 You are asked to give two distinct derivations of the ambig-w A1 A2 A2 . Here is one. You should be able to think of another. B
Chapter 17: Hints and Selected Solutions
Section 17.1 (page 470)
17.1 Here for your convenience is the truth table (P, Q, R): P t t t t f f f f Q t t f f t t f f R t f t f t f t f (P, Q, R)
T T F F T
Chapter 18: Hints and Selected Solutions
Section 18.1 (page 498)
18.2 1. This is an allowable change. The language in question does not have any position predicates, so the model for the original wor
Chapter 19: Hints and Selected Solutions
Section 19.2 (page 531)
19.1 1. cLarger(a,x) has date of birth = 1. This constant is also called c1 later in the exercise. 2. cLarger(c1 ,x) has date of birth