R UbSR
T 6 2
R sR
0 x A IGE E 9 A C 9 f A a f 6 2 9 Eg wE99 fgE9 a Y E IG E Y A 6 2 0
QP'#PXGBFFD4cfw_Q1FdQXwBQSXRS1AH'QBB#QmwtDXAXYFAvQ1mC1Q7543y
B
0P6 RXT SRSXe1mAQmf1vP'tFSXRbSXRcfw_XFXAPQXfFBvQPq'QI u
2 6 2 w G Y A E IG wE I x w 4 6 2 T 6 2 w G Y
ill-4.2: The main data structure we can use to solve this problem could be any
balanced search trees. For example, we can implement it by AWL tree.
At rst, we can dene the following class and global variables. We have several
settings listed below.
- Set
Binary Search Trees
10/4/2016
Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015
Ch.03 Binary Search Trees
1
Binary Search
Binary search can perform nearest neighbor queries on an
order
Ch1. Analysis of Algorithms
Input
Algorithm
Output
Acknowledgement: Parts of slides in this presentation come from
the materials accompanying the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015
1
Algorithms and D
C-5.2 Given an array A of elements that come from a total order, an inversion in A is a pair of
elements that are in wrong order, that is a pair (i,j) where i< j and A[i]>A[j]. Show that the inplace version of insertion sort, as given in Algorithm 5.5, ru
21
C-3.7 Hint: You will need to augment T , adding a new eld to each internal node
and ways of maintaining this eld during updates.
Solution: For each node of the tree, maintain the size of the corresponding subtree, dened as the number of internal nodes
Lists and Iterators
10/4/2016
Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015
Ch02 Data Structures
xkcd Seven http:/xkcd.com/1417/
Used with permission under Creative Commons 2.5 Lic
22C:31 Algorithms
Midterm Exam (100 points)
Closed books and notes (except one sheets of notes)
When asking for designing an algorithm, both English description and pseudo-code are
required. When asking for an efficient algorithm, the score will depend on
G
G
dtsdtp
q f q
fq
dt
hdwddt6RtqdtdddRdvrxwdBmDdVDdudvb
s df x v x df q f s q i f s qs s yf hf f s
c Y W U 7 S5Q I 5A F CA 75
6bS`[email protected]
i s df s xi i f vs q f s if y s s f vs d
Bd)hxrdRdrgdtsddRtq6pGwgvxRdrpx
f fpH#f f
sf s s f fs
3
ceWWeIqce"qqI%eWW
3 3 3
3 3 3
cIqI%eWWe W(WWqIq%5"W W
8P A E @d G G CA E @d R P R CH G P A @ CPdH C HG S
cQBBeixIBFEDBeiv5F`DTBRxYB5F8ceDqGWP qcUP
ceWWceWvWWceW
3 3 3
3 3
ceWWvWvFceW
8QBieBvq7qiqDcBIqDTBRseTBWEDB5BveW`cTBcQBeW8C5cIGWPqcUP
P A
4
w YY Y
m
T
U WU U 9 i
6XVhekth60wtkwd
dXkax YY Y weYF~RweYVXgudsxh|6xRw YxY6gudsx
5Y m
l Y 9 d d id I Y m A 7 9 d
Y Y l Y
T YoiR Y E
Y T iRw Y E
lY
Y T R wT iw Y E
Y
lY
Y FuwT wFiw Y E
T l Y T
l Y
6
Y uY T w Y T Y w Y xwY)
m A7
d i d U U i d i W
0
1 (a$WaaGR$av$3X
`W U` ` A U` X` x r W4` q 6 x U
o E 0 E 0
'yr 'yr E E
YY E
B X A U` 6X r q
[email protected](W
ooo E E
YYYl ' YYl Y
`W U
(@a`
A W U A e E A x 1` x` x r 9 W A4W loool l x X` qA B 9 A `W U` A B XXW qW A 6
[email protected][email protected] @q 7X @G9$7(vYYYYY( Y
0
AQ CA S 84 6 GQ F 6 8 S 8 A8 A y G T F yA 8A48 I 6 8 S 84 Q y 8 6 8 GQ F 1 i Ya 8A48
(BD3"QrB(6SuvCvH"QP4 @$W $XDA [email protected]$wH"QPVEP43$9(xa ! [email protected]$I
8 CA SQ A4QAT 1T86 8 0 ATy AQ TQ C F CA AQ CA 8Ay 1 884A CAQ x AT8A4y CT Q 48 FT Gy
[email protected](fry [email protected]$9w P$
Algorithms (CS:3330:0001 or 22C:031:001)
Homework 6
The problems in this homework are exercises in recursive thinking (of the type that
occurs in developing dynamic programming algorithms). In particular, each exercise asks
you to write a recurrence. You