Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
S TAT:2020
I n C lass Q uiz 5
T uesday(Oct. 2 9 )/Thursday(Oct . 3 1)
2 0 p oints
N ame:
S ection:
10f
F ormula
C onditional m ean a nd v ariance from bivariate normal distribution with parameters: x , y, a x , a y. p
Y lx = y
ay
(x  x )
ax
+ p
a~ l x
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
S TAT:2020 P robability a nd S tatistics f or E ngineers
E xam I A
F all 2 013
Thurs(l<ly, S eptember 26, ti:30  8p111
100 p ossible 1><>i11ts
S tudent
~<11ne
Jk,1 
Section [leLt.er/lf)
S ection [<i<1y/tin1e]
 
l11sLr11ctio11s:
I ]Vl11.ke swe 'OU l
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
S TAT:2020 P robability a nd S tatistics f or E ngineers
E xam l B
F all 2 013
'l'l111r,da;', S eptember '2G. G:lO  81Hn
100 possible points
fjl
St11dent Name
Section [day/tiI11']
Instru~lio1h~:
I ! \lake S life.\'" 11>1\e t he correct n umber of pages.
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
STAT:2020 Probability and Statistics for Engineers
Exam 2
Mockup
100 possible points
Student Name
Section [letter/#]
Section [day/time]
Instructions:
1) Make sure you have the correct number of pages. There are 8 pages and 14 questions.
2) Please use a p
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
Exam 2
mockup
Answers
1) c
2) a
3) b
4) b
5) a
6) a
7) c
8) a
9) both a and f are true
10) c
11) d
12) b
13) a
14) fY(y) =2y7 for 0 < y < 2 , 0 otherwise
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
Final Exam 2010 Form A
1. 1.00
2. no
3. 4.04
4. 0.1755
5. (b)
6. We plot a normal probability plot and we check to see if the data points fall close to
the straight diagonal reference line.
7. 16.3
8. 3.395 children per woman
9. (c)
10. 0.3301
11. (d)
12.
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
S TAT:2020
U nscheduled Q uiz 1
W ednesday S ept. 1 1
1 0 p oints
N ame:
S ection:
A n inspector ~ose;4arts a t r andom from a pool of 15. F our of t he p arts a re b ad a nd 11
a re good.
1. W hat is t he p robability thcfw_Lt t he i nspector chooses exa
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
G rading o n a ( Normal M odel) C urve
Scores on a 100 p oint s tatistics e xam a re modeled using a n ormal m odel w ith
= 72 a nd o=8.
X"
j.(_cfw_
7 2 \ ~ < j
1. S uppose t he professor uses a s traight p ercentage scale, t hat is 90 a nd
above is a
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
S TAT:2020
N ame:
F riday, O ct. 1 8
S ection:
U nscheduled Q uiz 5
1 0 p oints
Y~ N( '3. 'YJ ~ o'</)
1. S uppose t he d iameter (in inches) a t 5 feet above t he g round o n a c ertain t ype of t r ee
is n ormally d istributed w ith= 8.8 a nd
0"
2
= 7.84
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
:sr
4 1 'J
"r2 11 lJ,
U nscheduled Quiz 5
Friday, Oct. 25
cfw_1):0.
Section~
ri~10
~' ?.2s
The following a re w eights in g rams o f t he c ontents o f 1 6 s oda cans.
341
3 )2
35" 3
3 'i'(
'(,~3;)<)
Draw a s tem plot:
33 I
3 4 I "5'
3 5)
3 57
35 I
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
N ame:
S TAT:2020
I nClass Qui,.; 1 a
F riday S ept. 6
S ection:
2 0 p oints
P lease show yom work.
1. P rovide a reasonable description o f t h e s ample space: A s cale t hat displays 4 d ig it.; is
nS(x] LO m easme weight i n p otmds. 12 pLs]

S .:.
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
N ame:
S TAT:2020
I nClass Q uiz
\ \'ednesday Se~8
2 0 p oints
1
S ection:
Ro11nd c omputed probal>ilitics t o 4 d ecimal p1aces.
1. T he table belov> provides mforma.tion on 940 semicond11ctor wafers ir1 a m anufacturing
process. E ach h as b een c ateg
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
S TAT:2020
I nClass Q uiz 3 a
F riday O ctober 4
2 0 p oints (5 points per pro':ilcL'1)
N atne:
S ection:
r
o,.I;)
Suppose t he continuous random "'ariahlc "y ha~ r>roba'Jilit:.: der1sit)' function
I '
.'
'dy
3
F ind E (X)
~
1
4. l'i11d th~ cumulati'
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
ST_4T:2020 REDE!vfPTIO~ Q lTIZ
( Redemption f or Q uiz 4 ) A
F riday O ctober :.\'o,. 1
2 0 p oints
N ame:
S ection:
Pieaoe shot1 '1iork _for all problernsl. S u?pose (he cou11t,5 recoTded I>~' a ( ;eiger c ounter fcllcY"' a Poisson process v.ir.h a n
Probability and Statistics for the Engineering and Physical Sciences
STAT 22s:39

Fall 2013
22s:039 Probability and Statistics for Engineers
Exam 1A
Fall 2009
Thursday, September 24, 8  9:30pm
100 possible points
Student Name
Section [letter/#]
Section [day/time]
Instructions:
1) Make sure you have the correct number of pages. There are 8 pages