V
t 1 v/ t a.lt.h()'/rl
*
' - , 9 ( ,1t
tl
i -,I r :-f
r
i.
I I' il r
Li 1 4*;
b 4'tr l trrztz 1 \ | l l,art, I
+ t:ri
: Y .\.1. l 1T!1 i t, U 1Y1!|
+f
! lt
\ t ,lz,+ u.4b4.J L aq,'16t1
'-' J
rJl11,'u
The Simplex Method: Step by Step with Tableaus
The simplex algorithm (minimization form) can be summarized by the following steps: Step 0. Form a tableau corresponding to a basic feasible solution (BF
Linear Least Squares Problem
Consider an equation for a stretched beam: Y = x1 + x2 T Where x1 is the original length, T is the force applied and x2 is the inverse coefficient of stiffness. Suppose th
OPTIMOINNIN PERUSTEET:
Harjoitustehtvien ratkaisuja
Keijo Ruotsalainen
26. marraskuuta 2010
2
Solution of the homework 10 We shall compute the solution in two
steps: Let (0) = [6 6] be given initial d
Faculty of Technology, Mathematics division
Introduction to optimization
Assignment 9, Fall 2010
30. Write the Lagrangian of the following nonlinear optimization problem:
min
x2 + x2 .
1
290
+ x2
x1 +
Faculty of Technology, Mathematics division
Introduction to optimization
Assignment 8, Fall 2010
26. Solve the constrained optimization problem
min (x1 3)2 + (x2 2)2 .
x 1 +x 2 3
27. Determine the KKT
t l'al ) e
1':42 : !
:l
+
/ . s TtP:l k t
lot
i
I
I
, 1.+ ,'" l
-,F;.!lF4-!:
-i-1_-"rf!)
t
! r!"
:L4r.TAA.j4-i,:.vr.t,45^\1
!. t t
;.i t A's.
3.Ias
3"'4J
i.tuJ
" i L.)t:
'(4",+
h
i uJlt-
I t a75
r) ,t
Faculty of technology, Mathematics division
Introduction to optimization
Assignments 7, fall 2010
23. Find the minimum of f (x1 , x2 ) = 2x2 + 2x1 x2 + x2 + x1 x2 using the conjugate gradient
2
1
meth
Faculty of technology, Mathematics division
Introduction to optimization
Assignments 6, fall 2010
20. Solve the minimum of the function
f (x1 , x2 ) = 1 2x1 2x2 4x1 x2 + 10x2 + 2x2
1
2
using the gradi
OPTIMOINNIN PERUSTEET
Harjoitustehtvi, syksy 2010
15. Consider the unconstrained optimization problem
min x2 2x1 x2 + x2 2x1 + ex1 +x2 .
1
2
What is the necessary optimality criteria. Using this nd th
Faculty of technology, Mathematics division
Introduction to optimization
Assignments 4, fall 2010
9.
Formulate the dual problem to the following LP-problem
min
x1 2x2
x1 + x2 x3 = 1
x1 x2 x4 = 0
3x1 x
Faculty of technology, Mathematics division
Introduction to optimization
Assignments 2, fall 2010
1.
Find at least one vertex of the convex polyhedron U = cfw_x 0|Ax = b when
A=
2.
1 2 10
8
, b=
.
1 1