xb V g f v df 3 79 H e X v d u 0P ` X P 7 A 3 7 4 4d @ A 5 4 1 V t v X a y T TP ` Y X S W Q SP ` b X a 0 0 0 0 0 a a 0 a 0 0 P ` v v V r b X a a 0 0 0 0 0 a a 0 a 0 U 0 P d9 B 4 8 f g @ F A f9 5 4 e 4
MA 321 Introduction to Numerical Methods
Homework 5
Due: 7/17/09
1. Use a divided-dierence table to show that the following data can be represented by a
polynomial of degree 3:
x 2 1 0 1 2
3
y
1
4 11
MA 321 Introduction to Numerical Methods
Homework 3-Solutions
Due: 6/29/09
1. If a = 0.1 and b = 1.0, how many steps of the bisection method are needed to determine
the root with an error of at most 1
MA 321 Introduction to Numerical Methods
Homework 2-Solutions
Due: 6/24/09
1. If x and y are positive real numbers within the range of a 32-bit word-length computer
and if x y is also within the range
MA 321 Introduction to Numerical Methods
Homework 1 Solutions
Due: 6/17/09
1. A real number x is represented approximately by 0.6032, and we are told that the
relative error is at most 0.002. What is
MA 321 Introduction to Numerical Methods
Homework 6 Solutions
Due: 7/21/09
1
1. If we estimate 0 x41 dx by means of a lower sum using the partition P = cfw_0, 1 , 1,
+2
2
what is the result?
Solution
MA 321 Intro to Numerical Methods
Exam 1
Score
50
Name
Solutions
Date: June 30, 2009
/ 50
Please answer all questions completely and show all of your work. Be sure to write neatly so
that your solutio
MA 321 Intro to Numerical Methods
Exam 2
Score
Name
Date: July 22, 2009
/ 50
Instructions:
1. Be sure to write neatly so that your solution may be read as you intended it to be
read.
2. Partial credit
MA 321 Introduction to Numerical Methods
Exam 2 Review
Disclaimer: This worksheet contains some problems that you should work on to prepare for
the second midterm exam. This is in no way a preview of
MA 321 Intro to Numerical Methods
Exam 2
Score
50
Name
Solutions
Date: July 22, 2009
/ 50
Instructions:
1. Be sure to write neatly so that your solution may be read as you intended it to be
read.
2. P
MA 321 Introduction to Numerical Methods
Exam 1 Review
Disclaimer: This worksheet contains some problems that you should work on to prepare
for the rst midterm exam. This is in no way a preview of the
MA 321 Intro to Numerical Methods
Exam 1
Score
Name
Date: June 30, 2009
/ 50
Please answer all questions completely and show all of your work. Be sure to write neatly so
that your solution may be read
MA 321 Introduction to Numerical Methods
Homework 4 - Solutions
Due: 7/8/09
1. Find the Lagrange interpolating polynomial of least degree that interpolates the following table:
x 1
012
y
4 3 5 1
Solut
2 P U IF C D c C B h B D a 9 C i t t 9 4 5 9A i f C Bh 6 B5 a 9 f5 yB C e e 9 D ` a a 9 ` a 4 b BAA B h a 2 U G c 6 9 G 6 D D ba D r C D r f i 6 9 45 W D C D ` b P W F RRR E U IV s Q P U F RRR E H P G
i i i i cfw_ w t` u X k ` u x X k ` u X k ` X ks uw h p ` hX k y | cfw_ A8 @cQ 9EHG 9 9Q B E Q 9cC 98 P Q yz At H CA F UG s r G A @ T 9 B E A G H D C H R 8 8 9 D A @ E C H A G E @ B E 9 U 9 B r A H C
| | ~ G b r UT b r cUG g qe p q u q r g qe cfw_ FU iF h ` g k k e U P H W P W UT RU P y F X G g qe x p c U G g qe p c U G o q P R R y F S H F X I RT Q U PT R y U W s yT R G X c G W G HT g qe p o H W
' y w y r lg zu z iup y w wg w rr nwyDs5Dg%R5vIjwv%j`vmf%`DtW5`[email protected] 'n n 2d '5 l zu z s y w s r iup y w u wgp w cfw_ s k y f l qp mvjw`Hvyf5XgfvwxujnvD%vDtv% tsrDs5`muvDtTvvustfrmlWR%`mu kg q y wpp
V D u T B H e i Q C E H B T F u F Q u S q V B SA Cc H t C B B E H T F u B H D R D T B H S I u F t T S F R Q F Q FP H t Q S A CP HQ B Q F I B B E H QP D S v B D C t Et C B T F w s Q C v T F T T B B H S
V X C T f F T I T B H S I X F g C QP u d sa h d sa s u dssa g u s r s CA S X T Fi B E H F H T FP T B i QP DP HP R E G QP CA I f B Y Q C C A S X T Fi DP E H E DPA W C H D e d d sa u d sa d sa s u d sa
p p p p wX X p q p w t p e g ti x p X y F D D R @ F A V H D R G G A I A W I D F A F A W @ C F I D F H F B @o T ` f a eY V R Dc @ C F c D B I DH F A Q @ @9 DB DF I DH F A9 D GR @FIH @B R @IH I A F Q RF
V BA S T YP F k B I C T H B HP D F I X F B E H Y Q C D X S D T B GFA E HP G s ` t QPD S q q j i T Fg D B SA Ce BH C XP fFT I I C F GH BH S I X F h c D HQP F I b`a V g V c a i x c a iu dc x au RW Q BeP
V ` g x Q B E G B S A Ce B E H D B U C H Y Q C B QP A I D pP W S p C DP j x j b q y x y i x y l x w b j x j ` l x h g c xa k Q F P H p Q S i B E H H C E H F D D H Q B P p p B F p B E H B Q P X T B H B
MA 321 Introduction to Numerical Methods
Final Exam Review
Disclaimer: This worksheet contains some problems that you should work on to prepare for
the nal exam. This is in no way a preview of the exa