Bulk Transport
Endocytosis
Endocytosis takes up particles into the cell by invaginating the cell membrane, resulting in the release of the material inside of the cell.Learning Objectives
Describe endocytosis, including phagocytosis, pinocytosis, and receptor-mediated endocytosis.Key Takeaways
Key Points
- Endocytosis consists of phagocytosis, pinocytosis, and receptor -mediated endocytosis.
- Endocytosis takes particles into the cell that are too large to passively cross the cell membrane.
- Phagocytosis is the taking in of large food particles, while pinocytosis takes in liquid particles.
- Receptor-mediated endocytosis uses special receptor proteins to help carry large particles across the cell membrane.
Key Terms
- endosome: An endocytic vacuole through which molecules internalized during endocytosis pass en route to lysosomes
- neutrophil: A cell, especially a white blood cell that consumes foreign invaders in the blood.
Endocytosis
Endocytosis is a type of active transport that moves particles, such as large molecules, parts of cells, and even whole cells, into a cell. There are different variations of endocytosis, but all share a common characteristic: the plasma membrane of the cell invaginates, forming a pocket around the target particle. The pocket pinches off, resulting in the particle being contained in a newly-created intracellular vesicle formed from the plasma membrane.Phagocytosis
Phagocytosis (the condition of "cell eating") is the process by which large particles, such as cells or relatively large particles, are taken in by a cell. For example, when microorganisms invade the human body, a type of white blood cell called a neutrophil will remove the invaders through this process, surrounding and engulfing the microorganism, which is then destroyed by the neutrophil.
Phagocytosis: In phagocytosis, the cell membrane surrounds the particle and engulfs it.
Pinocytosis
A variation of endocytosis is called pinocytosis. This literally means "cell drinking" and was named at a time when the assumption was that the cell was purposefully taking in extracellular fluid. In reality, this is a process that takes in molecules, including water, which the cell needs from the extracellular fluid. Pinocytosis results in a much smaller vesicle than does phagocytosis, and the vesicle does not need to merge with a lysosome.
Pinocytosis: In pinocytosis, the cell membrane invaginates, surrounds a small volume of fluid, and pinches off.
Receptor-mediated Endocytosis
A targeted variation of endocytosis, known as receptor-mediated endocytosis, employs receptor proteins in the plasma membrane that have a specific binding affinity for certain substances. In receptor-mediated endocytosis, as in phagocytosis, clathrin is attached to the cytoplasmic side of the plasma membrane. If uptake of a compound is dependent on receptor-mediated endocytosis and the process is ineffective, the material will not be removed from the tissue fluids or blood. Instead, it will stay in those fluids and increase in concentration. Some human diseases are caused by the failure of receptor-mediated endocytosis. For example, the form of cholesterol termed low-density lipoprotein or LDL (also referred to as "bad" cholesterol) is removed from the blood by receptor-mediated endocytosis. In the human genetic disease familial hypercholesterolemia, the LDL receptors are defective or missing entirely. People with this condition have life-threatening levels of cholesterol in their blood, because their cells cannot clear LDL particles from their blood.
Receptor-Mediated Endocytosis: In receptor-mediated endocytosis, uptake of substances by the cell is targeted to a single type of substance that binds to the receptor on the external surface of the cell membrane.
Exocytosis
Exocytosis is the process by which cells release particles from within the cell into the extracellular space.Learning Objectives
Describe exocytosis and the processes used to release materials from the cell.Key Takeaways
Key Points
- Exocytosis is the opposite of endocytosis as it involves releasing materials from the cell.
- Exocytosis has five stages, each leading up to the vesicle binding with the cell membrane.
- Many bodily functions include the use of exocytosis, such as the release of neurotransmitters into the synaptic cleft and the release of enzymes into the blood.
Key Terms
- secretion: The act of secreting (producing and discharging) a substance, especially from a gland.
- vesicle: A membrane-bound compartment found in a cell.
Exocytosis
Exocytosis' main purpose is to expel material from the cell into the extracellular fluid; this is the opposite of what occurs in endocytosis. In exocytosis, waste material is enveloped in a membrane and fuses with the interior of the plasma membrane. This fusion opens the membranous envelope on the exterior of the cell and the waste material is expelled into the extracellular space. Exocytosis is used continuously by plant and animal cells to excrete waste from the cells.
Exocytosis: In exocytosis, vesicles containing substances fuse with the plasma membrane. The contents are then released to the exterior of the cell.
Some examples of cells releasing molecules via exocytosis include the secretion of proteins of the extracellular matrix and secretion of neurotransmitters into the synaptic cleft by synaptic vesicles. Some examples of cells using exocytosis include: the secretion of proteins like enzymes, peptide hormones and antibodies from different cells, the flipping of the plasma membrane, the placement of integral membrane proteins(IMPs) or proteins that are attached biologically to the cell, and the recycling of plasma membrane bound receptors(molecules on the cell membrane that intercept signals).
Licenses and Attributions
More Study Resources for You
Show More