Determining Atomic Structures by X-Ray Crystallography
Learning Objective
- Describe the method of x-ray crystallography as it is used for determining the structure of molecules.
Key Points
- To obtain an x-ray diffraction measurement, three components are necessary: a crystal sample, a source of x-ray beams, and a detector.
- Data from an X-ray crystallography experiment is used to generate a three-dimensional model of the molecules comprising the crystal. Scientists' knowledge of molecular shapes, bond angles and lengths, are all based on results from such experiments.
- X-ray crystallography is a powerful tool that has broad applications in the determination of the structures of both organic and inorganic compounds.
Terms
- x-ray crystallographyX-ray crystallography is a method of determining the three-dimensional arrangement of atoms within a molecule.
- reflectionsDiffraction of X-rays by the layers of atoms within a crystal produces spots, or reflections recorded by a detector. The presence and intensity of reflections is the raw data of an X-ray crystallographic experiment.
X-ray Crystallography
X-ray crystallography is a method for determining the arrangement of atoms within a crystal structure. Substances including inorganic salts and minerals, semiconductors, and organic and biological compounds can form crystals under suitable and specific conditions. The method is useful in determining the structure of molecules, which allows researchers to characterize and understand their behavior and function. This method of structure determination has provided the most reliable evidence scientists have about the way molecules are shaped and what their bonds angles and lengths are.The Diffraction Experiment
To obtain x-ray diffraction measurements, three components are necessary:- a crystal sample
- a source of x-ray beams
- a detector
The best x-ray crystallographic structures are derived from the purest crystal samples, meaning samples that contain only molecules of one type and as few impurities as possible. Crystal samples contaminated with impurities, samples that are too small, and samples that are not uniform may result in the formation of imperfect crystals, whose defects affect the quality of the data that can be obtained. Once a crystal has been deemed of sufficient quality, it is generally mounted on special instruments and "shot" with an intense beam of X-rays.



Historical Significance
X-ray crystallography is a powerful tool that has broad applications in the determination of the structures of both organic and inorganic compounds. Throughout the history of chemistry and biochemistry, x-ray crystallography has been one of the most important methods in helping scientists understand the atomic structure and bonding. X-ray diffraction data have proven useful in identifying the structures of protein parts of viruses, such as HIV, which was instrumental in the design of drugs that can specifically target the virus' needed machinery for its life cycle.Show Sources
Boundless vets and curates high-quality, openly licensed content from around the Internet. This particular resource used the following sources:
"x-ray crystallography."
http://en.wikipedia.org/wiki/x-ray%20crystallographyWikipedia
CC BY-SA 3.0.
"Structural Biochemistry/Proteins/X-ray Crystallography."
http://en.wikibooks.org/wiki/Structural_Biochemistry/Proteins/X-ray_CrystallographyWikibooks
CC BY-SA 3.0.
"X ray Diffraction."
http://commons.wikimedia.org/wiki/File:X_ray_diffraction.pngWikimedia Commons
CC BY-SA 3.0.
Licenses and Attributions
More Study Resources for You
Show More