Doping: Connectivity of Semiconductors
Learning Objective
- Examine the method of doping a pure semiconductor in order to increase its electrical conductivity.
Key Points
- Semiconductors are doped to generate either a surplus or a deficiency in valence electrons.
- Doping allows researchers to exploit the properties of sets of elements, referred to as dopants, in order to modulate the conductivity of a semiconductor.
- There are two types of dopants, n-type dopants and p-type dopants; n-type dopants act as electron donors, and p-type dopants act as electron acceptors.
- Combining n-type and p-type semiconductors creates systems which have useful applications in modern electronics.
Terms
- dopingThe addition of small quantities of an element (an impurity) to a pure semiconductor to change its electrical conductivity characteristics.
- n-type semiconductorA doped semiconductor in which conduction is due to the movement of additional electrons.
- p-type semiconductorA doped semiconductor in which conduction is due to the movement of positively-charged holes.
Electrical Conduction in Solids
There are two general categories of semiconductors: intrinsic semiconductors, which are composed of only one material, and extrinsic semiconductors, which have had other substances added to them to alter their properties. In semiconductor production, the process of creating extrinsic semiconductors by adding substances to a pure semiconductor for the purposes of modulating its electrical properties is known as doping. Semiconductors are doped to generate either a surplus or a deficiency in valence electrons.Energy Bands in Solids
Electrons in free atoms have discrete energy values. In contrast, the energy states available to the free electrons in a metal sample form a continuum of "energy bands." In the atomic lattice of a substance, there is a set of filled atomic energy "bands" with a full complement of electrons, and a set of higher energy unfilled "bands" which have no electrons. The highest energy band contains valence electrons available for chemical reactions. The conduction band is the band above the valence band. Electrons in the conduction band are free to move about in the lattice and can conduct current. In order for a substance to conduct electricity, its valence electrons must cross the band gap, which is the energy gap between the valence band and conduction band.

Semiconductor Doping
There are two types of dopants, n-type ("n" for negative), and p-type ("p" for positive) dopants. n-type dopants act as electron donors and have extra valence electrons with energies very close to the conduction band. When incorporated into the atomic lattice of a semiconductor, the valence electrons of n-type dopants can be easily excited to the conduction band. p-type dopants assist in conduction by accepting electrons. When a p-type dopant is incorporated into the atomic lattice of a semiconductor, it is able to host electrons from the conduction band, allowing the easy formation of positive holes.Generating an n-Type Semiconductor
When doping a semiconductor, such as the group IV element silicon (Si), with arsenic (As), a pentavalent n-type dopant from group V in the periodic table (which has one more valence electron than the semiconductor), the dopant behaves as an electron donor. When this occurs, an atom of dopant replaces an atom of silicon in the lattice, and therefore an extra valence electron is introduced into the structure. The fifth valence electron of As creates a surplus of electrons. When just a few atoms of the dopant replace silicon atoms in the lattice, an n-type semiconductor is created. The newly created semiconductor is better able to conduct current than the pure semiconductor.
Generating a p-Type Semiconductor
When a group IV semiconductor is doped with a p-type trivalent group III dopant (such as boron, B), which has one less valence electron than the semiconductor, the dopant acts as an electron acceptor. When a few atoms of trivalent dopant replace silicon atoms in the lattice, a vacant state (or electron "hole") is created and can act as electron carrier through the structure, which creates a p-type semiconductor. p-type semiconductors are characterized by a deficit of electrons and positive holes, which have the same effect as a surplus of positive charge. These positive holes accept electrons, rendering the semiconductor more effective at conducting current.
The p-n Junction
When we place p-type and n-type semiconductors in contact with one another, a p-n junction is formed. p-n junctions are basic components of most common electrical devices. While semiconductors doped with either n-type dopants or p-type dopants are better conductors than intrinsic semiconductors, interesting properties emerge when p- and n-type semiconductors are combined to form a p-n junction.

, and the types of semiconductor. The p-n junction forms between juxtaposed p- and n-type semiconductors. The free electrons from the n-type semiconductor combine with the holes in the p-type semiconductor near the junction. There is a small potential difference across the junction. The area near the junction is called the depletion band because there are few positive holes and few free electrons in this region.


Show Sources
Boundless vets and curates high-quality, openly licensed content from around the Internet. This particular resource used the following sources:
"Doping (semiconductor)."
http://en.wikipedia.org/wiki/Doping_(semiconductor)Wikipedia
CC BY-SA 3.0.
"Semiconductors/What is a Semiconductor."
http://en.wikibooks.org/wiki/Semiconductors/What_is_a_SemiconductorWikibooks
CC BY-SA 3.0.
"Forward-Biased_pn_Junction.svg."
https://commons.wikimedia.org/wiki/File:Forward-Biased_pn_Junction.svg
WikimediaPublic domain.
"Reverse-Biased_pn_Junction.svg."
https://commons.wikimedia.org/wiki/File:Reverse-Biased_pn_Junction.svgWikimedia
Public domain.
"Pn_Junction_Diffusion_and_Drift.svg."
https://commons.wikimedia.org/wiki/File:Pn_Junction_Diffusion_and_Drift.svgWikimedia
Public domain.
"Reverse-Biased_pn_Junction_Bands.svg."
https://commons.wikimedia.org/wiki/File:Reverse-Biased_pn_Junction_Bands.svgWikimedia
Public domain.
"Isolator-metal."
http://commons.wikimedia.org/wiki/File:Isolator-metal.svgWikimedia Commons
Public domain.
"Semiconductor band structure (lots of bands)."
https://commons.wikimedia.org/wiki/File:Semiconductor_band_structure_(lots_of_bands).pngWikimedia Commons
CC BY-SA 3.0.
Licenses and Attributions
More Study Resources for You
The materials found on Course Hero are not endorsed, affiliated or sponsored by the authors of the above study guide
Show More