Properties of Phosphorus
Learning Objective
- Review the properties of phosphorus.
Key Points
- Phosphorus is a chemical element with symbol P and atomic number 15. A multivalent nonmetal of the nitrogen group, phosphorus as a mineral is almost always present in its maximally oxidized state, as inorganic phosphate.
- Phosphorus is essential for life. As part of the phosphate group, it is a component of DNA, RNA, ATP (adenosine triphosphate), and the phospholipids that form all cell membranes.
- Phosphorus exists in several forms (allotropes) that exhibit strikingly different properties. The two most common allotropes are white phosphorus and red phosphorus.
Terms
- allotropeAny form of a pure element that has a distinctly different molecular structure to another form of the same element.
- phosphateAny salt or ester of phosphoric acid
- adenosine triphosphateA nucleotide that occurs in biological organisms and is used as a source of energy in cellular reactions and processes.
Phosphorus is a chemical element with symbol P and atomic number 15. A multivalent nonmetal of the nitrogen group, phosphorus as a mineral is almost always present in its maximally oxidized state, as inorganic phosphate rocks. Elemental phosphorus exists in two major forms -- white phosphorus and red phosphorus -- but due to its high reactivity, phosphorus is never found as a free element on Earth.
While the term "phosphorescence" is derived from the ability of white phosphorus to glow faintly upon exposure to oxygen, the current chemical understanding is that this phenomenon is actually chemiluminescence, a mechanism of light emission distinct from phosphorescence.
Importance of Phosphorus
Phosphorus is essential for life. As evidence of the link between phosphorus and terrestrial life, elemental phosphorus was historically first isolated from human urine, and bone ash was an important early phosphate source. As phosphate, it is a component of DNA, RNA, ATP (adenosine triphosphate), and the phospholipids that form all cell membranes. Low phosphate levels are an important limit to growth in some aquatic systems, and the chief commercial use of phosphorus compounds for production of fertilizers is due to the need to replace the phosphorus that plants remove from the soil.Phosphorus exists in several forms (allotropes) that exhibit strikingly different properties.
- The two most common allotropes are white phosphorus and red phosphorus.
- Another form, scarlet phosphorus, is obtained by allowing a solution of white phosphorus in carbon disulfide to evaporate in sunlight.
- Black phosphorus is obtained by heating white phosphorus under high pressures (about 12,000 standard atmospheres, or 1.2 gigapascals). In appearance, properties, and structure, black phosphorus resembles graphite -- it is black and flaky, a conductor of electricity, and has puckered sheets of linked atoms.
- Another allotrope is diphosphorus; it contains a phosphorus dimer as a structural unit and is highly reactive.
White Phosphorus and Related Molecular Forms


Red Phosphorus
Red phosphorus is polymeric in structure. It can be viewed as a derivative of P4 -- one of the P-P bonds is broken, and one additional bond is formed between the neighboring tetrahedrons, resulting in a chain-like structure. Red phosphorus may be formed by heating white phosphorus to 250 °C (482 °F) or by exposing it to sunlight. Phosphorus after this treatment is amorphous. Upon further heating, this material crystallizes. In this sense, red phosphorus is not an allotrope, but rather an intermediate phase between white and violet phosphorus, and most of its properties have a range of values. For example, freshly prepared, bright-red phosphorus is highly reactive and ignites at about 300 °C, though it is still more stable than white phosphorus, which ignites at about 30 °C. After prolonged heating or storage, the color darkens; the resulting product is more stable and does not spontaneously ignite in air.
Phosphorus Production
About 1,000,000 short tons (910,000 t) of elemental phosphorus is produced annually. Calcium phosphate (phosphate rock), mostly mined in Florida and North Africa, can be heated to 1,200-1,500 °C with sand, which is mostly SiO2, and coke (impure carbon) to produce vaporized P4. The product is subsequently condensed into a white powder underwater to prevent oxidation by air.Show Sources
Boundless vets and curates high-quality, openly licensed content from around the Internet. This particular resource used the following sources:
"adenosine triphosphate."
http://en.wikipedia.org/wiki/adenosine%20triphosphateWikipedia
CC BY-SA 3.0.
"White%20phosphrous%20molecule."
http://en.wikipedia.org/wiki/File:White_phosphrous_molecule.jpgWikipedia
Public domain.