The Scientific Method

Learning Objective

• Discuss hypotheses and the components of a scientific experiment as part of the scientific method

Key Points

• In the scientific method, observations lead to questions that require answers.
• In the scientific method, the hypothesis is a testable statement proposed to answer a question.
• In the scientific method, experiments (often with controls and variables) are devised to test hypotheses.
• In the scientific method, analysis of the results of an experiment will lead to the hypothesis being accepted or rejected.

Terms

• scientific methoda way of discovering knowledge based on making falsifiable predictions (hypotheses), testing them, and developing theories based on collected data
• hypothesisan educated guess that usually is found in an "if...then..." format
• control groupa group that contains every feature of the experimental group except it is not given the manipulation that is hypothesized

The Scientific Method

Biologists study the living world by posing questions about it and seeking science-based responses. This approach is common to other sciences as well and is often referred to as the scientific method. The scientific method was used even in ancient times, but it was first documented by England's Sir Francis Bacon (1561–1626) who set up inductive methods for scientific inquiry. The scientific method can be applied to almost all fields of study as a logical, rational, problem-solving method.

The scientific process typically starts with an observation (often a problem to be solved) that leads to a question. Let's think about a simple problem that starts with an observation and apply the scientific method to solve the problem. A teenager notices that his friend is really tall and wonders why. So his question might be, "Why is my friend so tall? "

Proposing a Hypothesis

Recall that a hypothesis is an educated guess that can be tested. Hypotheses often also include an explanation for the educated guess. To solve one problem, several hypotheses may be proposed. For example, the student might believe that his friend is tall because he drinks a lot of milk. So his hypothesis might be "If a person drinks a lot of milk, then they will grow to be very tall because milk is good for your bones." Generally, hypotheses have the format "If...then..." Keep in mind that there could be other responses to the question; therefore, other hypotheses may be proposed. A second hypothesis might be, "If a person has tall parents, then they will also be tall, because they have the genes to be tall. "

Once a hypothesis has been selected, the student can make a prediction. A prediction is similar to a hypothesis but it is truly a guess. For instance, they might predict that their friend is tall because he drinks a lot of milk.

Testing a Hypothesis

A valid hypothesis must be testable. It should also be falsifiable, meaning that it can be disproven by experimental results. Importantly, science does not claim to "prove" anything because scientific understandings are always subject to modification with further information. This step—openness to disproving ideas—is what distinguishes sciences from non-sciences. The presence of the supernatural, for instance, is neither testable nor falsifiable. To test a hypothesis, a researcher will conduct one or more experiments designed to eliminate one or more of the hypotheses. Each experiment will have one or more variables and one or more controls. A variable is any part of the experiment that can vary or change during the experiment. The control group contains every feature of the experimental group except it is not given the manipulation that is hypothesized. For example, a control group could be a group of varied teenagers that did not drink milk and they could be compared to the experimental group, a group of varied teenagers that did drink milk. Thus, if the results of the experimental group differ from the control group, the difference must be due to the hypothesized manipulation rather than some outside factor. To test the first hypothesis, the student would find out if drinking milk affects height. If drinking milk has no affect on height, then there must be another reason for the height of the friend. To test the second hypothesis, the student could check whether or not his friend has tall parents. Each hypothesis should be tested by carrying out appropriate experiments. Be aware that rejecting one hypothesis does not determine whether or not the other hypotheses can be accepted. It simply eliminates one hypothesis that is not valid. Using the scientific method, the hypotheses that are inconsistent with experimental data are rejected.

While this "tallness" example is based on observational results, other hypotheses and experiments might have clearer controls. For instance, a student might attend class on Monday and realize she had difficulty concentrating on the lecture. One hypothesis to explain this occurrence might be, "If I eat breakfast before class, then I am better able to pay attention." The student could then design an experiment with a control to test this hypothesis.

The scientific method may seem too rigid and structured. It is important to keep in mind that although scientists often follow this sequence, there is flexibility. Many times, science does not operate in a linear fashion. Instead, scientists continually draw inferences and make generalizations, finding patterns as their research proceeds. Scientific reasoning is more complex than the scientific method alone suggests.