Dynamics of Rotational Motion: Rotational Inertia
Learning Objectives
By the end of this section, you will be able to:- Understand the relationship between force, mass and acceleration.
- Study the turning effect of force.
- Study the analogy between force and torque, mass and moment of inertia, and linear acceleration and angular acceleration.

F = mrα
Recall that torque is the turning effectiveness of a force. In this case, because F is perpendicular to r, torque is simply τ = Fr. So, if we multiply both sides of the equation above by r, we get torque on the left-hand side. That is,rF = mr2α
orτ = mr2α.
This last equation is the rotational analog of Newton’s second law (F = ma) where torque is analogous to force, angular acceleration is analogous to translational acceleration, and mr2 is analogous to mass (or inertia). The quantity mr2 is called the rotational inertia or moment of inertia of a point mass m a distance r from the center of rotation.
Making Connections: Rotational Motion Dynamics
Rotational Inertia and Moment of Inertia
The general relationship among torque, moment of inertia, and angular acceleration is
As we might expect, the larger the torque is, the larger the angular acceleration is. For example, the harder a child pushes on a merry-go-round, the faster it accelerates. Furthermore, the more massive a merry-go-round, the slower it accelerates for the same torque. The basic relationship between moment of inertia and angular acceleration is that the larger the moment of inertia, the smaller is the angular acceleration. But there is an additional twist. The moment of inertia depends not only on the mass of an object, but also on its distribution of mass relative to the axis around which it rotates. For example, it will be much easier to accelerate a merry-go-round full of children if they stand close to its axis than if they all stand at the outer edge. The mass is the same in both cases; but the moment of inertia is much larger when the children are at the edge.
Take-Home Experiment
Problem-Solving Strategy for Rotational Dynamics
- Examine the situation to determine that torque and mass are involved in the rotation. Draw a careful sketch of the situation.
- Determine the system of interest.
- Draw a free body diagram. That is, draw and label all external forces acting on the system of interest.
- Apply net τ = Iα, α = net τI, the rotational equivalent of Newton’s second law, to solve the problem. Care must be taken to use the correct moment of inertia and to consider the torque about the point of rotation.
- As always, check the solution to see if it is reasonable.
Making Connections

Example 1. Calculating the Effect of Mass Distribution on a Merry-Go-Round

Strategy
Angular acceleration is given directly by the expressionτ = rF sin θ = (1.50 m) (250 N) = 375 N ⋅ m.
Solution for (a)
The moment of inertia of a solid disk about this axis is given in Figure 3 to beI = (0.500)(50.0 kg)(1.50 m)2 = 56.25 kg⋅m2.
Now, after we substitute the known values, we find the angular acceleration to beSolution for (b)
We expect the angular acceleration for the system to be less in this part, because the moment of inertia is greater when the child is on the merry-go-round. To find the total moment of inertia I, we first find the child’s moment of inertia Ic by considering the child to be equivalent to a point mass at a distance of 1.25 m from the axis. Then,Ic = MR2 = (18.0 kg)(1.25 m)2 = 28.13 kg ⋅ m2.
The total moment of inertia is the sum of moments of inertia of the merry-go-round and the child (about the same axis). To justify this sum to yourself, examine the definition of I:I = 28.13 kg ⋅ m2 + 56.25 kg ⋅ m2 = 84.38 kg ⋅ m2.
Substituting known values into the equation for α givesDiscussion
The angular acceleration is less when the child is on the merry-go-round than when the merry-go-round is empty, as expected. The angular accelerations found are quite large, partly due to the fact that friction was considered to be negligible. If, for example, the father kept pushing perpendicularly for 2.00 s, he would give the merry-go-round an angular velocity of 13.3 rad/s when it is empty but only 8.89 rad/s when the child is on it. In terms of revolutions per second, these angular velocities are 2.12 rev/s and 1.41 rev/s, respectively. The father would end up running at about 50 km/h in the first case. Summer Olympics, here he comes! Confirmation of these numbers is left as an exercise for the reader.Check Your Understanding
Solution
No. Torque depends on three factors: force magnitude, force direction, and point of application. Moment of inertia depends on both mass and its distribution relative to the axis of rotation. So, while the analogies are precise, these rotational quantities depend on more factors.Section Summary
- The farther the force is applied from the pivot, the greater is the angular acceleration; angular acceleration is inversely proportional to mass.
- If we exert a force F on a point mass m that is at a distance r from a pivot point and because the force is perpendicular to r, an acceleration a = F/m is obtained in the direction of F. We can rearrange this equation such that
F = ma,and then look for ways to relate this expression to expressions for rotational quantities. We note that a = rα, and we substitute this expression into F = ma, yielding
F = mrα
- Torque is the turning effectiveness of a force. In this case, because F is perpendicular to r, torque is simply τ = rF If we multiply both sides of the equation above by r, we get torque on the left-hand side. That is,
rF = mr2αor
τ = mr2α.
- The moment of inertia I of an object is the sum of MR2 for all the point masses of which it is composed. That is,
.
- The general relationship among torque, moment of inertia, and angular acceleration is
τ = Iαor
Conceptual Questions
1. The moment of inertia of a long rod spun around an axis through one end perpendicular to its length is ML2/3. Why is this moment of inertia greater than it would be if you spun a point mass M at the location of the center of mass of the rod (at L/2)? (That would be ML2/4.)
2. Why is the moment of inertia of a hoop that has a mass M and a radius R greater than the moment of inertia of a disk that has the same mass and radius? Why is the moment of inertia of a spherical shell that has a mass M and a radius R greater than that of a solid sphere that has the same mass and radius?
3. Give an example in which a small force exerts a large torque. Give another example in which a large force exerts a small torque.

5. A ball slides up a frictionless ramp. It is then rolled without slipping and with the same initial velocity up another frictionless ramp (with the same slope angle). In which case does it reach a greater height, and why?
Problems & Exercises
1. This problem considers additional aspects of Example 1: Calculating the Effect of Mass Distribution on a Merry-Go-Round. (a) How long does it take the father to give the merry-go-round an angular velocity of 1.50 rad/s? (b) How many revolutions must he go through to generate this velocity? (c) If he exerts a slowing force of 300 N at a radius of 1.35 m, how long would it take him to stop them?
2. Calculate the moment of inertia of a skater given the following information. (a) The 60.0-kg skater is approximated as a cylinder that has a 0.110-m radius. (b) The skater with arms extended is approximately a cylinder that is 52.5 kg, has a 0.110-m radius, and has two 0.900-m-long arms which are 3.75 kg each and extend straight out from the cylinder like rods rotated about their ends.
3. The triceps muscle in the back of the upper arm extends the forearm. This muscle in a professional boxer exerts a force of 2.00 × 103 N with an effective perpendicular lever arm of 3.00 cm, producing an angular acceleration of the forearm of 120 rad/s2. What is the moment of inertia of the boxer’s forearm?
4. A soccer player extends her lower leg in a kicking motion by exerting a force with the muscle above the knee in the front of her leg. She produces an angular acceleration of 30.00 rad/s2 and her lower leg has a moment of inertia of
5. Suppose you exert a force of 180 N tangential to a 0.280-m-radius 75.0-kg grindstone (a solid disk). (a)What torque is exerted? (b) What is the angular acceleration assuming negligible opposing friction? (c) What is the angular acceleration if there is an opposing frictional force of 20.0 N exerted 1.50 cm from the axis?

7. Zorch, an archenemy of Superman, decides to slow Earth’s rotation to once per 28.0 h by exerting an opposing force at and parallel to the equator. Superman is not immediately concerned, because he knows Zorch can only exert a force of 4.00 × 107 N (a little greater than a Saturn V rocket’s thrust). How long must Zorch push with this force to accomplish his goal? (This period gives Superman time to devote to other villains.) Explicitly show how you follow the steps found in the Problem-Solving Strategy for Rotational Dynamics section (above).
8. An automobile engine can produce 200 N∙m of torque. Calculate the angular acceleration produced if 95.0% of this torque is applied to the drive shaft, axle, and rear wheels of a car, given the following information. The car is suspended so that the wheels can turn freely. Each wheel acts like a 15.0 kg disk that has a 0.180 m radius. The walls of each tire act like a 2.00-kg annular ring that has inside radius of 0.180 m and outside radius of 0.320 m. The tread of each tire acts like a 10.0-kg hoop of radius 0.330 m. The 14.0-kg axle acts like a rod that has a 2.00-cm radius. The 30.0-kg drive shaft acts like a rod that has a 3.20-cm radius.
9. Starting with the formula for the moment of inertia of a rod rotated around an axis through one end perpendicular to its length
10. Unreasonable Results A gymnast doing a forward flip lands on the mat and exerts a 500-N ∙ m torque to slow and then reverse her angular velocity. Her initial angular velocity is 10.0 rad/s, and her moment of inertia is
11. Unreasonable Results An advertisement claims that an 800-kg car is aided by its 20.0-kg flywheel, which can accelerate the car from rest to a speed of 30.0 m/s. The flywheel is a disk with a 0.150-m radius. (a) Calculate the angular velocity the flywheel must have if 95.0% of its rotational energy is used to get the car up to speed. (b) What is unreasonable about the result? (c) Which premise is unreasonable or which premises are inconsistent?
Glossary
- torque:
- the turning effectiveness of a force
- rotational inertia:
- resistance to change of rotation. The more rotational inertia an object has, the harder it is to rotate
- moment of inertia:
- mass times the square of perpendicular distance from the rotation axis; for a point mass, it is I = mr2 and, because any object can be built up from a collection of point masses, this relationship is the basis for all other moments of inertia
Selected Solutions to Problems & Exercises
1. (a) 0.338 s (b) 0.0403 rev(c) 0.313 s3.
5. (a)
7. 3.96 × 1018 s or 1.26 × 1011 y
9.
10. (a) 2.0 ms (b) The time interval is too short. (c) The moment of inertia is much too small, by one to two orders of magnitude. A torque of
11. (a) 17,500 rpm (b) This angular velocity is very high for a disk of this size and mass. The radial acceleration at the edge of the disk is > 50,000 gs. (c) Flywheel mass and radius should both be much greater, allowing for a lower spin rate (angular velocity).