View the step-by-step solution to:

Question

# Find p(-5) and p(3) for the function p(x) = 2x5 -

9x4 - 2x2 + 12x - 2.

Question 2 options:

-11,987; -227

-11,915; -251

-4,487; -551

-11,985; -225

Question 3 (5 points)

Use synthetic substitution to find g(3) and g(-5) for the function g(x) = x5 - 8x3 - 2x + 7.

Question 3 options:

28, -2,108

40, -2,128

460, 2,122

-134, 1,642

Question 4 (5 points)

Expand the given power using the Binomial Theorem.

(z - 11)4

Question 4 options:

z4 - 44z3 + 726z2 - 5324z + 14641

z4 + 44z3 + 726z2 + 5324z + 14641

z4 - 44z3 + 726z2 - 44z + 1

11z4 + 44z3 + 726z2 + 5324z + 14641z

Question 5 (5 points)

Simplify the expression using long division.

(10x2 - 85x - 10) ÷ (x - 8)

Question 5 options:

quotient 10x - 5 and remainder -50

quotient 10x - 85 and remainder 8

quotient 10x - 5 and remainder -30

quotient 10x + 5 and remainder 30

Question 6 (5 points)

Factor the polynomial completely.

12a4b2 - 18a3b2

Question 6 options:

6(2a4b2 - 3a3b2)

6a3b2(2a - 3)

a3b2(12a - 18)

6a2b2(2a2 - 3)

Question 7 (5 points)

Find p(2) and p(4) for the function p(x) = 6x4 + 4x3 - 3x2 + 8x + 15.

Question 7 options:

147; 1,791

99; 639

139; 1,767

132; 1,776

Question 8 (5 points)

For the given function, determine consecutive values of x between which each real zero is located.

f(x) = -11x4 - 5x3 - 9x2 + 12x + 10

Question 8 options:

There are zeros between x = 2 and x = 3, x = 1 and x = 2, 0 x = -1 and x = -2, x = -1 and x = -2, x = -2 and x = -3.

There are zeros between 00 x = 1 and x = 0, x = 0 and x = -100.

There is a zero between x = 0 and x = -100.

There is a zero between 00 x = 0 and x = 1.

Question 9 (5 points)

Simplify the expression using synthetic division.

(6x3 - 84x2 + 264x - 240) ÷ (x - 10)

Question 9 options:

quotient 6x2 - 144x - 1176 and remainder 11,520

quotient 66x2 + 576x - 6,024 and remainder 60,000

quotient 6x2 - 24x + 24 and remainder 0

quotient 60x2 + 516x + 5,424 and remainder 54,000

Question 10 (5 points)

Expand the given power using the Binomial Theorem.

(10k - m)5

Question 10 options:

100,000k5 + 50,000k4m + 10,000k3m2 + 1,000k2m3 + 50km4 + m5

100,000k5 - 50,000k4m + 10,000k3m2 - 1,000k2m3 + 50km4 - m5

100,000m5 + 50,000km4 + 10,000k2m3 + 1,000k3m2 + 50k4m + k5

k5 - 5k4m + 10k3m2 - 10k2m3 + 5km4 - m5

Question 12 (5 points)

Simplify the given expression. Assume that no variable equals 0.

(17x-5y11)(-2xy8)

Question 12 options:

-34x-4y19

-34y19

x4

-34x19y-60

15y19

x4

Question 14 (5 points)

Use synthetic substitution to find g(4) and g(-5) for the function g(x) = 3x4 - 5x2 + 7x - 7.

Question 14 options:

723, 1,778

133, -292

709, 1,708

869, 472

Question 15 (5 points)

Simplify the given expression.

(16x2 + 15xy - 19y2) - (3x2 - 3xy)

Question 15 options:

13x2 - 18xy

13x2 + 12xy - 19y2

13x2 - 15xy - 16y2

13x2 + 18xy - 19y2

Question 16 (5 points)

Simplify the given expression.

-10xy(4xy3 - 7xy + 9y2)

Question 16 options:

-40x2y4 - 7x2y2 + 9x2y3

-40x2y4 + 70xy + 90y2

-40x2y4 + 70x2y2 - 90xy3

-40x2y4 - 7xy + 9y2

Question 17 (5 points)

Simplify the given expression.

5a3(9ab3 - 5a2b2 + 2a3b)

Question 17 options:

45a4b3 - 25a5b2 + 10a6b

45a2b4 - 25a2b2 + 2a2b3

45a4b3 - 25a5b2 + 10a6b3

45a4b3 - 25a2b2 + 10a3b3

Question 18 (5 points)

Given a polynomial and one of its factors, find the remaining factors of the polynomial. Some of the factors may not be binomials.

16x3 - 48x2 - 49x + 147; x - 3

Question 18 options:

(4x - 7)(4x + 7)

(16x2 - 49)

(4x - 7)

(4x - 7)(4x - 7)

Question 19 (5 points)

Simplify the expression using long division.

(3x2 - 97x + 32) ÷ (x - 32)

Question 19 options:

quotient 3x - 97 and remainder 32

quotient 3x - 1 and remainder 0

quotient 3x - 1 and remainder -64

quotient 3x + 1 and remainder 64

Q2) Option A Q3) Option A Q4) Option A Q5) Option A Q6) Option B Q7)... View the full answer

Q2 )
p( x )= 2x5-9 x4- 2x2+12x-2
P ( -5 ) = 2(-575 - 9(-5) 4 - 2 (-5) ? + 12 (5 ) - 2
- 11987
option A is
P (3 ) = 2(3)5 - 9(3)4 - 2(3 ) 2+12(3) -2
corocel
=- 227
4 3)
9(x ) = 25-8x3 - 2x+7
9(s ) =...

### Why Join Course Hero?

Course Hero has all the homework and study help you need to succeed! We’ve got course-specific notes, study guides, and practice tests along with expert tutors.

• ### -

Study Documents

Find the best study resources around, tagged to your specific courses. Share your own to gain free Course Hero access.

Browse Documents