View the step-by-step solution to:

tobethederivativeof\begin{array}{l}{\text { Let } F \text { be a field and } f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \text { be in } F[x] .

 Let F be a field and f(x)=a0+a1x++anxn be in F[x]. Define f(x)=a1+2a2x++nanxn1 to be the derivative of f(x).


 Prove that  Conclude that we can define a homomorphism of abelian groups D:F[x]F[x] by D(f(x))=f(x)

b)Calculate the kernel of D if char F = 0.

c)Calculate the kernel of D if char F = p.

d)Prove That



 Suppose that we can factor a polynomial f(x)F[x] into linear factors, say f(x)=a(xa1)(xa2)(xan) Prove that f(x) has no repeated factors if and only if f(x) and f(x) are relatively  prime. 

Recently Asked Questions

Why Join Course Hero?

Course Hero has all the homework and study help you need to succeed! We’ve got course-specific notes, study guides, and practice tests along with expert tutors.


Educational Resources
  • -

    Study Documents

    Find the best study resources around, tagged to your specific courses. Share your own to gain free Course Hero access.

    Browse Documents
  • -

    Question & Answers

    Get one-on-one homework help from our expert tutors—available online 24/7. Ask your own questions or browse existing Q&A threads. Satisfaction guaranteed!

    Ask a Question