Image transcription text

Part 1 : Orbital Speeds of the Planets in the Solar System ( 27 pts total Procedure Note rounding instructions ! ) Though the orbits of the eight planets are ellipses , the orbital paths have rather low eccentricities , In other words , their orbits are fairly lose approximations of a circle . We can calculate the length of a circular orbital path using the simple formula for the circumference of a circle : 2 ur . where is the radius or in the case of the solar system , the average distance from the planet to the Sun 1 . Using the radius of orbit data in column 3 ( see table below ) calculate the length of each planet 's orbit and place in column 4 Round each answer to 2 decimal p laces . ) Planet Mass Radius of orbit Length of Orbit Orbital Period Orbital Speed ( kg ) ( + 10 YET ) ( X 109 km ) Orbital Period ( kris ) Mercury 3.3 x 1023 87 . 969 days 0. 2408 yea Venus 4 9 * 10 24 224 .700 days 0. 6152 yea Earth 60 * 10 24 365 . 25 days 10 year Mars 6 4 X 10 20 2.28 68 6 97 1 days 8 808 years Jupite 9 * 10 27 7.79 11 859 years Saturn 57 * 10 20 35 29 457 years Uranus 87 * 10 25 28.77 84 323 years Neptune 0 * 1026 45 03 8479 years Express in appropriate scientific notation Next calculate the number of seconds in a year ( use 3 decimal places and scientific notation )

This question was created from Lab 11_Rotation Curves, Mass Distribution, and Dark Matter_2013.pdf

ng elit. Nam lacinia pulvinar tortor nec faci

inia pulvinar tortor nec facilisis. Pellentesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie consequat, ultrices ac magna. Fusce dui lectus, congue vel laoreet ac, dictum vitae odio. Donec aliquet. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam lUnlock full access to Course Hero

Explore over 16 million step-by-step answers from our library

Subscribe to view answeripiscing elit. Nam lacinia pulvinar t

ultrices ac magna. Fusce dui lectus, congue vel laoreet ac, dictum vitae odio. Donec aliquet. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque dapibus efficitur