**Please original answers only**

**1.Draw the recursion tree when n = 8, where n represents the length of the array, for the following recursive method:**

int sum(int[] array, int first, int last)

{

if (first == last) return array[first];

int mid = (first + last) / 2;

return sum(array, first, mid) + sum(array, mid + 1, last);

}

-Determine a formula that counts the numbers of nodes in the recursion tree.

-What is the Big-Q for execution time?

-Determine a formula that expresses the height of the tree.

-What is the Big-Q for memory?

-Writ an iterative solution for this same problem and compare its efficiency with this recursive solution.

*2. Using the recursive method in problem 1 and assuming n is the length of the array.*

-Modify the recursion tree from the previous problem to show the amount of work on each activation and the row sums.

-Determine the initial conditions and recurrence equation.

-Determine the critical exponent.

-Apply the Little Master Theorem to solve that equation.

-Explain whether this algorithm optimal.

### Recently Asked Questions

- A Gaussian beam from a frequency-doubled Nd:YAG laser, with wavelength 532 nm, is measured to have a beam radius of 412 m and 639 m at two points separated by

- Do you agree thatcompanies under perfect competition as well as monopoly are enjoying productive efficiency and allocative efficiency? 2.What is condition for

- Seven months ago , you purchased 600 shares of RL , Inc . stock at a price of $ 47.60 a share . You have received dividends totaling $ 1.20 a share . Today ,