# It is claimed that the proportion with rice production over 209,500

cwt (Company2 > 209500.0) is the same for the month of March (Month=3) and October (Month=10). Test this claim using a hypothesis test at 1% level of significance. In order to perform this function, you need to make the appropriate modifications to the provided script. In other words, you should:

Uncomment lines 27 - 35
Replace ???DATASET_NAME??? with production
Replace '???VARIABLE_NAME???' with the variable 'Company2'
Replace ???Month1??? with the appropriate value
Replace ???Month2??? with the appropriate value
Replace ???Xvalue??? with the appropriate value
Part II: Hypothesis Testing for the Difference of Two Population Proportions (Scenario C)

In Milestone2.py file, perform hypothesis test for the difference of two population proportions for Company1 and Company2.

####### Milestone 2 Python Script

import pandas as pd

import scipy.stats as st

from snhu_MAT243 import prop_1samp_ztest

from snhu_MAT243 import means_1samp_ttest

from statsmodels.stats.proportion import proportions_ztest

##Step 1: Import your data set

##-----------------------------------------------------------------------------

#???DATASET_NAME??? = pd.read_csv('???FILE_NAME???')

####### Step 2: Perform hypothesis test for the difference of two population proportions

##-------------------------------------------------------------------------------------------------

# print ('Hypothesis test for the difference of two population proportions - Step 2')

# n1 = ???DATASET_NAME???.loc[???DATASET_NAME???['Month'] == ???Month1???]['???VARIABLE_NAME???'].count()

# n2 = ???DATASET_NAME???.loc[???DATASET_NAME???['Month'] == ???Month2???]['???VARIABLE_NAME???'].count()

# x1 = (???DATASET_NAME???.loc[???DATASET_NAME???['Month'] == ???Month1???]['???VARIABLE_NAME???'] > ???Xvalue???).values.sum()

# x2 = (???DATASET_NAME???.loc[???DATASET_NAME???['Month'] == ???Month2???]['???VARIABLE_NAME???'] > ???Xvalue???).values.sum()

# counts = [x1, x2]

# n = [n1, n2]

# print (proportions_ztest(counts, n))

# print ('')

####### Step 3: Perform hypothesis test for the difference of two population proportions

##-------------------------------------------------------------------------------------------------

# print ('Hypothesis test for the difference of two population proportions - Step 3')

# n1 = ???DATASET_NAME???.loc[???DATASET_NAME???['Month'] == ???Month1???]['???VARIABLE_NAME???'].count()

# n2 = ???DATASET_NAME???.loc[???DATASET_NAME???['Month'] == ???Month2???]['???VARIABLE_NAME???'].count()

# x1 = (???DATASET_NAME???.loc[???DATASET_NAME???['Month'] == ???Month1???]['???VARIABLE_NAME???'] > ???Xvalue???).values.sum()

# x2 = (???DATASET_NAME???.loc[???DATASET_NAME???['Month'] == ???Month2???]['???VARIABLE_NAME???'] > ???Xvalue???).values.sum()

# counts = [x1, x2]

# n = [n1, n2]

# print (proportions_ztest(counts, n))

# print ('')

####### Step 4: Perform hypothesis test for the difference of two population means

##----------------------------------------------------------------------------------

# print ('Hypothesis test for the difference of two population means - Step 4')

# jul_data = ???DATASET_NAME???.loc[???DATASET_NAME???['Month'] == ???Month1???]['???VARIABLE_NAME???']

# aug_data = ???DATASET_NAME???.loc[???DATASET_NAME???['Month'] == ???Month2???]['???VARIABLE_NAME???']

# print (st.ttest_ind(jul_data, aug_data, equal_var=False))

# print ('')

####### Step 5: Perform hypothesis test for the difference of two population means

##----------------------------------------------------------------------------------

# print ('Hypothesis test for the difference of two population means - Step 5')

# feb_data = ???DATASET_NAME???.loc[???DATASET_NAME???['Month'] == ???Month1???]['???VARIABLE_NAME???']

# aug_data = ???DATASET_NAME???.loc[???DATASET_NAME???['Month'] == ???Month2???]['???VARIABLE_NAME???']

# print (st.ttest_ind(feb_data, aug_data, equal_var=False))

# print ('')

**321,403 students got unstuck** by Course

Hero in the last week

**Our Expert Tutors** provide step by step solutions to help you excel in your courses