Asked by donhoggs
I have this practice in R in one of mt classes. the question below...
I have this practice in R in one of mt classes.
the question below is the practice for two weeks ago, can you please explain.
Given the matrix X whose rows represent different data points, you are asked to perform a k-means clustering on this dataset using the Euclidean distance as the distance function. Here k is chosen as 3. The
Euclidean distance d between a vector x and a vector y is defined as Eculidian Distance. The centers of 3 clusters were initialized as µ1 = (6.2, 3.2) (red),
µ2 = (6.6, 3.7) (green), µ3 = (6.5, 3.0) (blue).
X =
5.9 3.2
4.6 2.9
6.2 2.8
4.7 3.2
5.5 4.2
5.0 3.0
4.9 3.1
6.7 3.1
5.1 3.8
6.0 3.0
1. What's the center of the first cluster (red) after one iteration? (Answer in the format of [x1, x2], round
your results to three decimal places, same as problems 2 and 3)
2. What's the center of the second cluster (green) after two iteration?
3. What's the center of the third cluster (blue) when the clustering converges?
4. How many iterations are required for the clusters to converge?
Answered by edgardorada0002
usce dui l
iscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque d
gue
sque dapi
ongue vel laoreet ac, dictum vitae odio. Donec aliquet. Lorem ipsum dolor si
gue
usce dui l
ur laoreet. Nam risus ante, dapibus a molestie consequat, ultrices ac magna. Fusce
gue
ipsum dolo
sum dolor sit amet, consectetur adipiscing
Unlock full access to Course Hero
Explore over 16 million step-by-step answers from our library
Subscribe to view answerusce dui l
molestie consequat, ultrices ac magna. Fusce dui lectus, congue vel laoreet ac, dictum vitae odio. Donec aliquet. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie consequat, ultrices ac magna. Fusce dui lectus, congue vel laoreet ac, dictum vitae odio. Donec aliquet
gue
sque dapi
ng elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie consequat, ultrices ac magna. Fusce dui lectus, congue vel laoreet ac, dictum
gue
usce dui l
risus ante, dapibus a molestie consequat, ultrices ac magna. Fusce dui lectus, congue vel laoreet ac, dictum vitae odio. Donec aliquet. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie consequat, ultrices ac magna. Fusce dui lectus, congue vel laoreet ac, dictum vitae odio. Donec aliquet. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam lacinia pulvinar tort
gue
ipsum dolo
o. Donec aliquet. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pel
gue
gue
gue