Question 1 Check whether the following systems are linear or not: (a) y(n) = n x(n) (b) y(n) = x(n) +- 2x(n - 2) (c) y(n) = 2x(n) + 4 (d) y(n) = x(n)...
This question has been answered
Question

ELECTRICAL ENGINEERING


Help needed in the following questions along with MATLAB plot


Question 1.jpg

Question 2.jpg

Image transcriptions

Question 1 Check whether the following systems are linear or not: (a) y(n) = n x(n) (b) y(n) = x(n) +- 2x(n - 2) (c) y(n) = 2x(n) + 4 (d) y(n) = x(n) cos on N-1 (e) y(n) = Lx(n)l (f) y(n) = N x(n - k) *=0 Question 2 Determine whether the following discrete-time signals are periodic or not. If periodic, determine the fundamental period. (a) sin (0.02an) (b) sin (5an) (c) cos An (d) sin 2an 2n n -+ cos 3 5 (e) cos cos (f) cos +0.3n (g) el(2/2)n (h) I+ eizan3 _ jaxn/7 Question 3 Determine whether the following discrete-time signals are periodic or not. If periodic, determine the fundamental period. (a) sin (0.02an) (b) sin (5an) (c) cos An (d) sin -+ cos 2n n 3 (e) cos cos "it (f) cos ~ +0.3n (g) ela/2)n (h) 1+ e /2xw3 _j4an/7

Question 4 Find the convolution of the signals N n = - 2, 0, 1 x(n) = 3 n = -1 O elsewhere h(n) = 8(n) -28(n -1) + 38(n -2) - 8(n -3) Question 5 An interconnection of LTI systems is shown in Figure 2.14. The impulse responses are hi(n) = (1/2)" [u(n) - u(n - 4)]; h2(n) = 8(n) and hy(n) = u(n - 2). Let the impulse response of the overall system from x(n) to y(n) be denoted as h(n). (a) Express h(n) in terms of hi(n), h2(n) and hy(n). (b) Evaluate h(n). h,(n) x(n) y(n) h, (n) h,(n) Figure 2.14 System for Example 2.26. Question 6 Determine the convolution sum of two sequences: (1, 2, 2, 1] x(n) = (4, 2, 1,3), h(n) = T

Answered by Expert Tutors

tesque dapibus efficitur

ultrices ac magna. Fusce dui lectus, congue vel laoreet ac, dictum vitae odio. Donec aliquet. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie consequat, ultrices ac magna.
Step-by-step explanation

Screenshot 2020-12-26 150247.jpg

Screenshot 2020-12-26 150301.jpg

Screenshot 2020-12-26 150313.jpg

Screenshot 2020-12-26 150330.jpg

Screenshot 2020-12-26 150512.jpg

5 Attachments
Screenshot 2020-12-26 150247.jpg
jpg
Screenshot 2020-12-26 150301.jpg
jpg
Screenshot 2020-12-26 150313.jpg
jpg
Screenshot 2020-12-26 150330.jpg
jpg
Screenshot 2020-12-26 150512.jpg
jpg
Get unstuck

443,473 students got unstuck by Course
Hero in the last week

step by step solutions

Our Expert Tutors provide step by step solutions to help you excel in your courses